
University of California
Santa Barbara

Statistical Methods in Cryptography

A thesis submitted in partial satisfaction
of the requirements for the degree

Master of Science
in

Computer Science

by

Wei Dai

Committee in charge:

Professor Stefano Tessaro, Chair
Professor Huijia (Rachel) Lin
Professor Ömer Eǧecioǧlu
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Abstract

Statistical Methods in Cryptography

by

Wei Dai

Cryptographic assumptions and security goals are fundamentally distributional.

As a result, statistical techniques are ubiquitous in cryptographic constructions and

proofs. In this thesis, we build upon existing techniques and seek to improve both

theoretical and practical constructions in three fundamental primitives in cryptogra-

phy: blockciphers, hash functions, and encryption schemes. First, we present a tighter

hybrid argument via collision probability that is more general than previously known,

allowing applications to blockciphers. We then use our result to improve the bound of

the Swap-or-Not cipher. We also develop a new blockcipher composition theorem that

is both class and security amplifying. Second, we prove a variant of Leftover Hash

Lemma for joint leakage, inspired by the Universal Computational Extractor (UCE)

assumption. We then apply this technique to construct various standard-model UCE-

secure hash functions. Third, we survey existing “lossy primitives” in cryptography,

in particular Lossy Trapdoor Functions (LTDF) and Lossy Encryptions (LE); we pro-

pose a generalized primitive called Lossy Deterministic Encryption (LDE). We show

that LDE is equivalent to LTDFs. This is in contrast with the block-box separation of

trapdoor functions and public-key encryption schemes in the computational case. One

common theme in our methods is the focus on statistical techniques. Another theme

is that the results obtained are in contrast with their computational counterparts—the

corresponding computational results are implausible or are know to be false.
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Chapter 1

Introduction

Modern cryptography is almost exclusively based on computational assumptions.

The notions such as computational indistinguishablity, one-way functions, pseudo-

random generators and pseudorandom functions are of fundamental importance. Cou-

pled with the computational assumptions, cryptographic proofs and constructions

often utilize numerous other techniques. Since the cryptographic assumptions and

security goals are fundamentally distributional, statistical techniques is ubiquitous.

In this thesis, we build upon existing techniques and constructions in three different

topics: blockciphers, hash functions, and encryption schemes. One common theme in

our methods is the focus on statistical techniques. Another theme is that the results

obtained are in contrast with their computational counterparts—the corresponding

computational results are implausible or are know to be false.

1.1 Hybrid Argument

The hybrid argument, which is essentially the triangle inequality, is arguably the

most fundamental tool in security proofs. When bounding the difference in behavior
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Introduction Chapter 1

of randomized algorithms with {0, 1} output, G0, from G1, one can define an interme-

diate system Gh. The triangle inequality tells us that

|Pr [G0 ) 1]� Pr [G1 ) 1]|  |Pr [G0 ) 1]� Pr [Gh ) 1]|+ |Pr [Gh ) 1]� Pr [G1 ) 1]| .

In the statistical case, the statistical distance SD, which we will define formally later,

also satisfy the triangle inequality. For X, Y, Z distributions over the same sample

space, we have

SD(X, Z)  SD(X, Y) + SD(Y, Z).

Applying this multiple times, one can bound SD(X1, Xn) by bounding SD(Xi, Xi+1)

for all i = 1, . . . , n� 1. In particular, if SD(Xi, Xi+1)  ei for all i = 1, . . . , n� 1, then

SD(X1, Xn)  Âi ei. However, in many applications, the individual bounds of ei are

obtained from CP(Xi | X<i)  1+e2

M , where M is the support size of Xi. We show that,

with this assumption, a tighter bound can be obtained.

SD(X1, Xn) 
r

Â
i

e2
i .

As application of this result, we prove a tighter bound of the Swap-or-Not con-

struction.

1.2 Blockcipher Composition Theorems

Blockciphers are fundamental primitives in practical cryptography. It is the build-

ing block of symmetrical cryptography. The security game of a blockcipher is, essen-

tially, an interaction of an adversary with the blockcipher. The adversary has access to

the blockcipher as a oracle to query values of the cipher at different input points. At

2
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the end, the adversary should output a bit. The advantage of the adversary against

the blockcipher is the difference in the adversary’s behavior between interacting with

the blockcipher and interacting with a truly randomly sampled permutation.

Adaptive versus Non-Adaptive Security For the bounds to have practical crypto-

graphic importance, we usually want to prove adaptive security. That is to say, the

adversary can query the blockcipher depending on the answers it has received. How-

ever, non-adaptive security is usually easier to prove. The reason is that, often times,

proving non-adaptive security of a blockcipher is similar to bounding the convergence

time of a Markov chain. Currently, we do not have techniques to deal with adaptivity

directly. Instead, the final security claim is reach by way of a composition theorem.

The “two weak make one strong” theorem, proved in [MPR07], states that the com-

position two non-adaptively secure blockcipher is adaptively secure with roughly the

same parameters (the formal statement is given in Chapter 3). However, for practical

bounds, this means that one has to double the number of rounds to achieve adaptive

security.

In Chapter 3, we define the notion of chi-square distance. We show that, using

this new notion of distance, we get both distinguisher-class amplification and security

amplification. In particular, under the new definition of security, the composition of

two non-adaptively e-secure blockciphers is a adaptively e2-secure blockcipher.

However, we note the potential difficulties in bounding the chi-square distance to

the Swap-or-Not construction, and we leave it as an open problem.

3



Introduction Chapter 1

1.3 Leftover Hash Lemma for Joint Leakage

The Leftover Hash Lemma [HILL99] has seen wide-usage in cryptography, such

as for key derivation and deterministic encryption. Roughly, it states that if a random

variable X has enough “entropy”, then

(S, hS(X)) ⇡ (S, U),

where h is a universal hash function, S is a uniform random seed, and U is a uni-

form element in the range of h. The average case variant of Leftover Hash Lemma

[DORS08], states essentially the same result with the present of leakage. In particular,

if X has enough entropy given leakage L(X), then

(S, L(X), hS(X)) ⇡ (S, L(X), U).

UCEs The Universal Composition Extractor (UCE) assumption is an assumption of

hash functions [BHK13]. It was designed to instantiate hash functions in random ora-

cle model in the standard model [BHK13]. UCE is a parameterized assumption based

on the type of UCE source involved. A UCE source, SHash, makes queries to the ora-

cle, Hash, and produces leakage L. In this work, we focus on statistically unpredictable

sources, that is the queries of L should have high (w(log(l))) min-entropy given the

leakage L. Another classification of sources is a split source, S = splt[S0,S1]. Roughly

speaking, the leakage of

Joint Leakage and Construction of UCEs Following the Universal Computational

Extractor assumption [BHK13], we look at the case where the leakage function L takes

both the source X and the output hS(X) or U. More concretely, given that X has

4
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enough entropy given L(X, U), we ask if

(S, L(X, hS(X)))
?⇡ (S, L(X, U)).

We prove a variant of Leftover Hash Lemma for the case of joint leakage. We obtain

UCE-secure hash function for slightly increasing number of query and constant output

length. With help of the recent Extremely Lossy Function (ELF) assumption [Zha16],

we show how to get O(l) output length (and hence poly output length) with the same

query regime.

1.4 Unified Lossy Primitive: Lossy Deterministic Encryp-

tion

Lossy trapdoor functions (LTDF) was first proposed by Peikert and Waters [PW11].

In their work, concrete instantiations of LTDF was achieved under decisional Diffie-

Hellman (DDH) and learning-with-error (LWE) assumptions. Roughly speaking, a

LTDF is a family of efficiently computable functions that can be sampled in two modes:

injective mode and lossy mode. In injective mode, the function is a regular trapdoor

function. That is, one can invert the function using a trapdoor. In the lossy mode,

the function is compressing, meaning that the image size is smaller than the domain

size. The security of LTDFs states that the two modes should be computationally in-

distinguishable. Peikert and Waters used the abstraction of LTDFs to build the first

CCA encryption scheme based on lattice assumptions. Following their seminal work,

LTDFs have helped realize multiple security goals in the standard model, including

lossy encryption, deterministic encryption, and hedged encryption.

Lossy encryption was first proposed by [PVW08] to construct oblivious transfer
5
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(OT) protocols. In simple terms, lossy encryption has two modes, injective and lossy

mode. In injective mode, it should act as a correct encryption scheme. In the lossy

mode, encryption of any two messages should be statistically close (under the encryp-

tion randomness). As with LTDFs, the security of lossy encryption says that the two

modes should be computationally indistinguishable. The first construction of lossy

encryption was realized using DDH and LWE. Follow-up works [BBN+09, BHY09]

utilize LTDFs as an abstraction to build lossy encryption.

Deterministic encryption and hedged encryption is motivated by randomness sub-

version in public-key encryption. Deterministic encryption offers security when the

encrypted messages has enough entropy (requiring the messages to be either a block-

source [BFOR08] or a q-block-source [FOR15]). Hedged encryption [BBN+09] offers

standard IND-CPA when the encryption randomness is ideal. When the encryption

randomness is compromised, it offers security when the message and randomness

jointly offers contains entropy.

In Chapter 5, we put forth a unified security definition of lossy Deterministic En-

cryption (LDE) and construct secure LDE using LTDF in a modular way. In short, LDE

requires statistical closeness for high-entropy messages in the lossy mode. We show

that such assumption is, in some sense, equivalent to LTDFs.

Theorem (Informal). Any Lossy Deterministic Encryption Scheme is also a Lossy Trapdoor

Function.

6



Chapter 2

Preliminaries

We use log to denote the base-2 logarithm. Given a positive integer n, we define

[n] = {1, ...., n}, and use uppercase letters to denote the exponential base 2 of the

lowercase letters (for example, N = 2n). Let W be a finite sample space, we identify

a distribution, X, over W with its probability mass function PX : W ! [0, 1]1. For a

distribution or random variable X, we use calligraphic letter, X , to denote the support.

For notational convenience, we also write |X| as the size of the support of X. We use

kPXka := (Âw2W PX(w)a)1/a, for a � 1, to denote the a-norm of the pmf, PX. We use

(X, Y) to denote the joint probability distribution of X and Y. For a set S, we let US

denote the uniform distribution on S, and we use Un to denote U{0,1}n , the uniform

n-bit strings.

Cryptographic convention We often specify a distribution by how it is sampled. For

instance,

{(x, z) : x $ {0, 1}n, z = x},
1Notice that since we are working with a finite sample space, a distribution is uniquely determined

given a probability mass function, and vice versa.

7
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denotes a pair of n-bit strings, that is equal and both marginally uniform.

Security parameter We use l as the security parameter. All randomized algorithm

is assumed to take 1l as an implicit input. All parameters will be functions of l. If

“polynomial” or “negligibility” of a parameter is mentioned, it will be with respect to

the security parameter l. We use poly to denote the class of polynomials in l, and const

to denote some constant function of l. For a function of l, f (l), we will sometimes

suppress writing the security parameter l and just write f .

2.1 Statistical Definitions

Definition 1. The statistical distance of two distributions over W, X, Y, is defined to be,

SD(X, Y) :=
1
2 Â

w2W
|PX(w)� PY(w)|.

If SD(X, Y)  e, we also write

X ⇡s,e Y.

2.1.1 Entropy

There are three notions of entropy that is of interest: Shannon entropy, minimum

entropy and collision entropy. Here, we adopt the unified definition of Rényi Entropy

[R+61] and a conditional variant [FB14].

Definition 2 (Rényi Entropy [R+61]). Let X be a distribution, for a > 1, the Rényi entropy

of X is defined to be

Ha(X) :=
a

1� a
log kPXka.

8
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We also define H•(X) to be the limit of Ha(X) as a ! •, and H1(X) to be the limit of

Ha(X) as a! 1.

Remark. Let X be a distribution over W. We have that

H•(X) = � log(max
w2W

PX(w)),

H1(X) = � Â
w2W

PX(w) log PX(w).

Definition 3 (Conditional Rényi Entropy [FB14]). Let a > 1, we define

Ha(X | Y) := � logRena(X | Y),

where

Rena(X | Y) := EY[kPX|Y=yka]
a

a�1 .

Lemma 1 ([FB14]). Let X, Y be jointly distributed and 1 < a < b. Then,

log(|X|) � Ha(X | Y) � Hb(X | Y) � 0.

Additionally, we define two natural notions, collision probability and prediction prob-

ability.

Definition 4.

CP(X) := EX[PX(X)],

Pred(X) := max
x2X

PX(x).

The average case are simply the expectation over the conditioned variable.

CP(X | Y) := EY[CP(X | Y = y)],
9
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Pred(X | Y) := EY[Pred(X | Y = y)].

Lemma 2 (Jensen’s Inequality). Let X be a discrete real-valued random variable. Let f be a

convex function. Then,

f (E[X])  E[ f (X)].

A direct corollary of Jensen’s inequality relates Rényi probability of second order

and the conditional collision probability.

Corollary 1.

Ren2(X | Y)  CP(X | Y).

Proof. We first rewrite both sides.

Ren2(X | Y) = EY[kPX|Y=yk2]
2,

CP(X | Y) = EY[kPX|Y=yk2
2].

The result now follows from the convexity of squaring.

Another useful notion is Rényi divergence.

Definition 5. Let 1 < a. The Rényi divergence of order a is defined to be,

Da(XkY) :=
1

a� 1
log(Â

w
PX(w)aPY(w)1�a).

Additionally,

D1(XkY) = lim
a!1

Da(XkY),

D•(XkY) = lim
a!•

Da(XkY).

10
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D1 is also known as the Kullbach-Leibler (KL) divergence. For notational convenience, we use

RD as the exponentiated Rényi divergence.

RDa(XkY) = 2Da(XkY).

Proposition 1.

D1(XkY) = EX[log(
PX
PY

)].

D•(XkY) = log(sup
w

PX
PY

).

Proposition 2. Let X be a distribution on X . Then,

Ha(X) + Da(XkUX ) = log |X |.

Lemma 3 (Pinsker’s Inequality).

SD(X, Y) 
r

ln(2)
2

D1(XkY).

Lemma 4 (Second Order Pinsker’s Inequality [GS02]).

SD(X, Y)  1
2

q
RD2(XkY)� 1.

Lemma 5 (Leakage Chain Rule for Rényi Entropy [FB14]). The leakage chain rule states

that, conditioning on a random variable Z, the Rényi entropy only decreases by at most

log(|Z|), i.e.

Ha(X | Y, Z) � Ha(X | Y)� log(|Z|).

11
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Proposition 3.

RD2((X, Z)k(Y, Z)) = EZ[RD2(X | Z = zkY | Z = z)]

Proof. We derive that

RD2((X, Z)k(Y, Z)) = Â
(x,z)2W

P(X,Z)(x, z)2

P(Y,Z)(x, z)

= Â
(x,z)2W

PZ(z)2PX|Z=z(x)2

PZ(z)PY|Z=z(x)

= Â
z

PZ(z)Â
x

PX|Z=z(x)2

PY|Z=z(x)

= EZ[RD2(X | Z = zkY | Z = z)].

2.1.2 Universal Hash Functions and q-Wise Independent Hash Func-

tions

Definition 6. A collection of functions

H = {Hs : {0, 1}n ! {0, 1}m | s 2 {0, 1}d}

is universal, if for H $ H, and two distinct input x 6= y,

Pr [H(x) = H(y)] =
1
M

=
1

2m .

12
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Definition 7. A collection of functions

H = {Hs : {0, 1}n ! {0, 1}m | s 2 {0, 1}d}

is q-wise independent, if for H $ H, and q pairwise distinct inputs x1, . . . , xq, the outputs,

H(x1), . . . , H(xq), are independent as random variables and marginally uniform.

2.2 A Generalized Leftover Hash Lemma via Rényi Di-

vergence

We present a generalized version of Leftover Hash Lemma [HILL99] that general-

izes the following variants studies in literature: crooked [DS05, FOR15], average case

[DORS08], and multiple-input Leftover Hash Lemma [FOR15].

Flat sources A distribution X such that H•(X) � k is called a k-source. A flat k-

source is a distribution whose probability mass function is constant on any non-zero

inputs. A well-known fact is that any k-source is a convex combination of flat k-sources

[V+].

We prove an analogous fact for (conditionally) simple sources, which we will de-

fine below. The motivation is to be able to study (conditional) q-wise k-sources, which

are jointly distributions of the form X = (X1, . . . , Xq) ((X, Z) = ((X1, . . . , Xq), Z))

such that the component wise (conditional) entropy is at least k, i.e. H•(Xi) � k

(H•(Xi | Z) � k). Such sources directly corresponds to statistically unpredictable

UCE sources which we will study in Chapter 4.

Definition 8 ((Conditionally) Simple sources). A q-wise k-source, X = (X1, . . . , Xq), is

simple if there exists injective functions, f2, . . . , fq, such that X = (X1, f2(X1) . . . , fq(X1)).
13
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We say that a conditional q-wise k-source, (X, Z), is conditionally simple if for all z, X | Z = z

is simple.

Lemma 6. A (conditional) q-wise k-source is a convex combination of (conditionally) simple

q-wise k-sources.

Proof. We first prove the unconditional version. Let X = (X1, . . . , Xq) be a q-wise k-

source. Without loss of generality, we can assume that |supp(Xi)| = 2k. The proof is

by induction on q. Base case, let q = 2; we show that (X1, X2) is a convex combination

of simple k-sources. We identify the support of X1 and X2 with integers in [2k]. Con-

sider the matrix A = (ai,j = Pr [(X1, X2) = (i, j)]). Notice the constraints of being a flat

2-wise k-source says that Âi ai,j = 2�k for all i and Âj ai,j = 2�k for all j. Furthermore,

Âi,j ai,j = 1. We note that 2k A is doubly stochastic. Hence, 2k A is a convex combina-

tion of permutation matrices of size 2k. Notice that permutation matrix of size 2k by

2k, say (pij), corresponds to an injective function f : supp(X1) ! supp(X2), where

f (i) = j iff pij = 1. Hence, (X1, X2) is a convex combination of simple sources of the

form (X1, f (X1)). We proceed by means of induction. Observe that if (X1, . . . , Xi) is

simple, an injective function f : supp(X1, . . . , Xi)! supp(Xi+1) corresponds to some

injective f 0 : supp(X1) ! supp(Xi+1). As the inductive step, we suppose that X =

(X1, . . . , Xi+1) is a q-wise flat k-source. We know that (X1, . . . , Xi) is a convex combi-

nation of simple sources. For each of this simple source, say (X01, f2(X1)0, . . . , fi(X0i)),

we apply the argument in base case to the distribution (X01, X0i+1), specified by,

Pr
⇥
(X01, X0i+1) = (x1, xi+1)

⇤
=

Pr
⇥
X01 = x1

⇤
· Pr [Xi+1 = xi+1 | X1 = x1, X2 = f2(x1), . . . , Xi = fi(x1)] .

14
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Note that if

(X1, . . . , Xi) = Â
f2,..., fi

c f2,..., fi(X01, f2(X01), . . . , fi(X01)),

then

(X1, . . . , Xi, Xi+1) = Â
f2,..., fi

c f2,..., fi(X01, f2(X01), . . . , fi(X01), X0i+1).

Hence, since (X0i , X0i+1) is a convex combination of simple ones, so is (X1, . . . , Xi+1).

This concludes the proof for the unconditional case. The conditional case follows from

the fact that the joint distribution is a convex combination of marginal ones,

(X, Z) = Â
z

Pr [Z = z] (X | Z = z, z).

Each X | Z = z is a convex combination of simple sources. We classify the simple

sources by the functions f2, . . . , fq, and write

(X | Z = z, z) = Â
f2,..., fq

c f2,..., fq,z(X1 | Z = z, f2(X1 | Z = z), . . . , fq(X1 | Z = z), z).

Hence, we can rewrite (X, Z) as a convex combination of conditionally simple sources.

(X, Z) = Â
z

Pr [Z = z] Â
f2,..., fq

c f2,..., fq,z(X1 | Z = z, f2(X1 | Z = z), . . . , fq(X1 | Z = z), z)

= Â
f2,..., fq

c0f2,..., fq Â
z

c00f2,..., fq,z((X1 | Z = z, f2(X1 | Z = z), . . . , fq(X1 | Z = z)), z),

where c0f2,..., fq
= Âz c f2,..., fq,zPr [Z = z] and c00f2,..., fq,z =

c f2,..., fq ,z·Pr[Z=z]
c0f2,..., fq

.

Theorem 1 (Generalized Leftover Hash Lemma). Let h be a 2q-wise independent hash

function with input space D and output space R. Let f : R ! S be any surjective function.

Let X = (X1, . . . , Xq) be a q-wise k-source with leakage Z where each Xi has support D, and

15
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Xi 6= Xj for i 6= j. Let U = (UR, . . . , UR). It holds for uniformly sampled seed S that

(S, f (h(S, X)), Z) ⇡s,e (S, f (U), Z), (2.1)

where e = 1
2

p
2�k(|S|q � 1).

Proof. By Lemma 6, it suffices to prove Equation 2.1 for conditionally simple q-wise

k-sources, (X, Z). However, it will be convenient that we first prove this for the uncon-

ditional simple sources. Let X = (X1, g2(X1), . . . , gq(X1)) be a simple q-wise k-source.

We will show that

A = (S, f (h(S, X))) ⇡s,e (S, f (U)) = B,

where e = 1
2

p
|S|q2�k. Here, we follow the technique by [Zha16] and compute the

second order Rényi divergence between A and B.

RD2(AkB) = Â
s,y

(Pr [S = s]Pr [ f (h(s, X)) = y])2

Pr [S = s]Pr [ f (U) = y]

= Â
y

Âs Pr [S = s]Pr [ f (h(s, X) = y]2

Pr [ f (U) = y]
.

Notice that, for X1, X2
$ X.

Â
s

Pr [S = s]Pr [ f (h(s, X)) = y]2 = Pr [ f (h(S, X1)) = y = f (h(S, X2))] .

Also, by the universality and 2q-wise independence of h,

Pr [ f (U) = y] = Pr [h(S, X1) = y] .

16
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Hence, we rewrite

RD2(AkB) = Â
y

Pr [ f (h(S, X1)) = y = f (h(S, X2))]
Pr [h(S, X2) = y]

= Â
y

Pr [ f (h(S, X1)) = y | Pr [ f (h(S, X2)) = y]]

= Â
x1,x2

Pr [X = x1]Pr [X = x2]Â
y

Pr [ f (h(S, x1)) = y | f (h(S, x2)) = y] .

We look at two events separately. If x1 = x2, then

Pr [ f (h(S, x1)) = y | f (h(S, x2)) = y] = 1.

Hence,

Â
y

Pr [ f (h(S, x1)) = y | f (h(S, x2)) = y] = |S|q.

If x1 6= x2, since X is simple, x1 and x2 differ at every component. Hence, by 2q-wise

independence of h,

Pr [ f (h(S, x1)) = y | f (h(S, x2)) = y] = Pr [ f (h(S, x1)) = y] ,

and

Â
y

Pr [ f (h(S, x1)) = y | f (h(S, x2)) = y] = 1.

Finally, we have

RD2(AkB) = Â
x

Pr [X = x] |S|q + Â
x1 6=x2

Pr [X = x1]Pr [X = x2]

= CP(X)|S|q + (1�CP(X))

= 1 + CP(X)(|S|q � 1).

17
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For the conditional case, i.e. (X, Z) is some conditionally simple q-wise k source. We

have that X | Z = z is a simple q-wise kz-source. Let Az = (S, f (h(S, X)), Z) | Z =

z, Bz = (S, f (U), Z) | Z = z. We compute that,

RD2((S, f (h(S, X)), Z)k(S, f (U), Z)) = Ez[RD2(AzkBz)]

= Ez[1 + CP(X | Z = z)(|S|q � 1)]

= 1 + CP(X | Z)(|S|q � 1).

We obtain the bound claimed, for any conditionally simple q-wise k-source (X, Z),

using Lemma 4.

SD((S, f (h(S, X)), Z); (S, f (U), Z)) 
q

RD2((S, f (h(S, X)), Z)k(S, f (U), Z))� 1

 1
2

q
2�k(|S|q � 1).

Comparison with previous results Our bound, 1
2

p
|S|q2�k, is tighter for the multi-

input case compared to the bound, 1
2

q
|S|qq22�k, obtained in [FOR15] which utilizes

a union bound. Our technical contribution is the definition of (conditionally) sim-

ple sources and showing that they are the extreme points for (conditional) q-wise

k-sources. However, we note that our version does not handle almost k-wise inde-

pendent hash function directly. Instead, if the statistical distance definition of being

almost k-wise independent is used, one can still use our result.

18
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2.3 Cryptographic Background

Cryptographic primitives and constructions are systems with states, inputs, and

outputs2. One way to formalize them is the framework of random systems [Mau02].

Formally speaking, a (X ,Y)-system, S, is a system with input space X and output

space Y . A system’s behavior is specified by a infinite list of conditional probability

distributions, PS
Yi|Xi,Yi�1

. In this thesis, all primitives and constructions of interest are

stateless. It is easy to see that such systems are convex combination of deterministic

systems. Such systems are call cc-stateless in the random systems literature. We will

refer to such systems as keyed systems.

A quick and efficient way to describe systems in a precise manner is using pseu-

docode. A randomized procedure taking input shall specify a random system in the

following manner: variable shall be shared between successive calls of the procedure,

and the return value shall be the output of the system. Cryptographic definitions and

reductions are also easily captured with pseudocode. In particular, we use the frame-

work of code-based game playing [BR08]. A game, G, is consists of procedures and

named oracles. The code shall always be specified in pseudocode. The entry point of

the game shall be implicitly the procedure “Main”. State between different oracles are

not shared. At the end, a game usually outputs a bit, G ) b, b 2 {0, 1}. In addition to

its brevity, it works naturally to the style of “hybrid” proofs. One can change part of

the pseudocode of game G to game G0. By carefully selecting the changed code, one

can bound the distance between games, |Pr [G ) 1]� Pr [G ) 0] |.
2While some system can be realized as a randomized Turing machine, not all systems need to be

efficient implementable using Turing machines.
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2.3.1 Computational Indistinguishability

We follow the standard definition in literature. A function, f (l), is said to be

negligible if for any n 2 N there exists m 2 N such that f (l)  1
ln for all l > m. Two

distribution ensembles, {Al}, {Bl}, are said to be computationally indistinguishable

if for any polynomial time algorithm, D, the function

|Pr [D(Al)) 1]� Pr [D(Bl)) 1]| ,

is negligible in l (recall that D takes 1l as an implicit input).

2.3.2 Hybrid Argument

The hybrid argument is a technique to bound the closeness of two distributions,

D0 and Dn, via a sequence of “hybrids”, D1, . . . , Dn. Two consecutive hybrids, Di and

Di+1, usually differ in one feature. Using the triangle inequality (for statistical distance

and computational distance), one then obtains a bound of the distance between D0 and

Dn by bounding the distance between Di and Di+1 for all i = 0, . . . , n� 1.

Statistical Hybrid Argument Suppose we have some joint distribution X = (X1, . . . , Xn)

with each Xi distributed on some set X . We would like to bound the distance of the

distribution, X , from uniform, U = (UX , . . . , UX ). Conventional hybrid method uti-

lizes bounds

SD(Xi; UX | X1, . . . , Xi�1)  ei, for all 1  i  n,

to argue that

SD(X; U)  e1 + . . . + en.
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Such method can be seen as bounding between the distance between n + 1 hybrids,

i.e.

(X1, . . . , Xn) = X

(UX , . . . , Xn)

...

(UX , . . . , UX ) = U.

For simplicity, suppose all n bounds are the same, say e. This method yield an overall

error of ne, which grows O(n) as n increases.

2.3.3 Blockciphers

Blockciphers, which are key-ed permutations, are widely used primitives in cryp-

tography. Practical constructions of blockciphers such as DES or AES consists of mul-

tiple rounds of simpler key-ed permutations. The round keys are, in general, derived

from the blockcipher key. The heuristics is that compositing different permutations

will make the construction appear more “random”, hence amplifying the security.

Random Permutation In this thesis, by a secure blockcipher we mean indistinguisha-

bility from a random permutation, under a uniformly random chosen key that is hid-

den from the adversary. Let A be any oracled randomized algorithm. Let RP denote

the random permutation, whose code is specified in Figure 2.1. Let P be any key-ed

permutation. We write AP to mean that we run A and offering it two sided oracle

(both forward and backward queries) access of P.

Security proofs of blockciphers are generally offered in two steps. First, one uses a

computational assumption to replace a underlying primitive with a information the-
21
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Proc RP[D](x) :
if T[x] = ? then

T[x] $ D \ B
B = B [ {T[x]}

return T[x]

Figure 2.1: Pseudocode implementing RP[D], where D is the domain.

oretical counterpart. Second, the construction is proved secure assuming information

theoretical primitives. The classic example is the security proof of the Feistal construc-

tion assuming PRF security of the primitive [LR88].

Let S, T be two keyed permutations. We consider two types of distinguishers,

non-adaptive and adaptive distinguisher. A non-adaptive distinguisher is specified

by the set of query points. An adaptive distinguisher can adaptively select query

points based on the output of the cipher. Without loss of generality, we do not count

redundant queries by a distinguisher. By convention, we will use D to denote a non-

adaptive distinguisher and A to denote an adaptive one. Usually, we will also use q

to denote the number of queries a distinguisher makes.

Transcripts and Security of Blockcipehrs

We associate each interaction, e.g. DS, with a transcript of the form

t =
�
(x1, y1), (x2, y2), . . . , (xq, yq)

�
,

where we assume that without loss of generality the distinguisher makes no duplicate

queries. Now, we fix two systems, say S, U, where U is the ideal system (e.g. a PRP),

and a distinguisher D. We denote the set of potential transcripts (attainable with non-

zero probability) as T(DS) and T(DU) respectively. We now make the assumptions
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that T(DS) ✓ T(DU)3. For each set of potential transcripts, T, we have a natural

probability assignment, PT(t), assigning each transcript to the probability of attaining

it. We define the distinguishing advantage of D against two systems to be.

Advdist
S,U(D) := kPT(DS)(·)� PT(DU)(·)k1,

Now, we recall the standard advantage of non-adaptively security of weak PRP and

adaptive security of strong PRP.

Adv
nprp
S (q) := max

non-adaptive q-query D
Advdist

S,U(D),

Adv
±prp
S q := max

adaptive q-query A
Advdist

S,U(A).

3This will be true for our setting, and can always be made true by conditioning on some good event.
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Tighter Security Proofs Using Collision

Probability and Chi-Square Distance

Proofs using statistical distance is ubiquitous in cryptography. The main advantage

of statistical distance is two-fold. First, they are the statistical analog of the compu-

tational distance. Second, they satisfy data processing inequality and triangular in-

equality. In this chapter, we explores proof techniques using collision probability, CP,

and chi-squared distance,

c(X; Y) :=

s

Â
w2W

(PX(w)� PY(w))2

PY(w)
=
q

RD2(XkY)� 1.

3.1 Tighter Hybrid Argument

It was first observed by Chung and Vadhan [CV08] that the bound of statistical

distance (X1, . . . , Xn) to (U1, . . . , Un) only needs to grow
p

n larger than the individ-

ual distance between Xi and Ui. Their proof uses Hellinger distance and repetitive

applications of Holder’s inequality. Here, we prove a more general version via Rényi
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divergence. The main different is, in our Theorem 2, one can use component bound of

the form CP(Xi | X<i)  1+e
M where M is the support size of Xi conditioned on some

given value of X<i (X<i denotes X1, . . . , Xi�1). This enables us to apply this result to

the case where the joint distribution describes a permutation, i.e. Xi 6= Xj for i  j.

Theorem 2. Let X be some finite set. Let U = (U1, . . . , Un) be some uniform distribution,

where each component, Ui, is distributed over X . Let mi = maxx<i |Ui | U<i = x<i|. Let

X = (X1, . . . , Xn) be jointly distributed over the support of U. Suppose that CP(Xi | X<i) 
1+ei

mi
, for all i = 1, . . . , n. Then,

SD(X; U) 
s

ln(2)
2

n

Â
i=1

ei.

Before we offer the proof, let us look at two special cases of the Lemma. First,

let mi = |X | for all i. In this case, the Lemma captures the same result as [CV08].

Second, take mi = |X |� i, and that U represents the (possibly partial) function table

of a permutation. This case will be crucial for application to block ciphers. Third, if

we take ei = e for all i, our final bound is
q

ln(2)
2 ne, which is O(

p
n) with respect to n.

Proof (of Theorem 2). The key idea here is to bound the KL divergence, or the total

Shannon entropy deficiency, with bounds on collision probabilities. By Lemma 1 and

Corollary 1,

� log(CP(X | Y))  H2(X | Y)  H1(X | Y).
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Proc EK,(X) :
for i = 0 to r do

X0  K[i]� X; X̂  max(X, X0)
if i(X̂) = 1 then X  X0

return X

Figure 3.1: The Swap-or-Not Cipher, SN[N, r], which takes r rounds keys
K[1], . . . , K[r] and round functions 1,r.

Suppose that CP(Xi | X<i)  1+ei
mi

. We compute

D1(XkU)  log(|(X1, . . . , Xn)|)� H1(X1, . . . , Xn) (Lemma 2)


n

Â
i=1

log(mi)�
n

Â
i=1

H1(Xi | X<i)


n

Â
i=1

log(mi) +
n

Â
i=1

log(CP(Xi | X<i))


n

Â
i=1

log(mi) +
n

Â
i=1

log(
1 + ei

mi
)


n

Â
i=1

log(1 + ei)


n

Â
i=1

ei (log(1 + x) = x� x2

2
+ O(x3)).

Finally, by Pinsker’s inequality (Lemma 3),

SD(X; U) 
r

ln(2)
2

D1(XkU) =

s
ln(2)

2

n

Â
i=1

ei.

3.1.1 Applications to Swap-Or-Not

The motivation for the swap-or-not construction (see Figure 3.1) was format-preserving

encryption [HMR12]. In format-preserving encryption, one assumes some group struc-
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Figure 3.2: Comparison of bounds of Swap-or-Not. The domain size is N = 264. The
plit “SN4” and “SN5” represents bounds of npca advantage of npca advantage of
npca advantage of npca advantage obtained in [HMR12] for SN[N, 4n] and SN[N, 5n],
respectively. “SN4’́’ represents the bound obtained in this work for SN[N, 4n]. One
can see the our bound saves at least one pass in this setting of parameters.

ture on the domain and some total ordering. The goal is to generate a key-ed permu-

tation on the domain that is indistinguishable from a random permutation with the

maximum amount of queries.

We use the Theorem 3 proved in [HMR12], together with Theorem 2 to prove the

following result.

Theorem 3.

Adv
nprp
SN[N,r](q) 

r
ln(2)

2
qN(

1
2
+

q
2N

)r/2.

We first observe the following identity.

Claim 1. Let X be a distribution over {0, 1}n. Then,

kX�Udk2
2 = kXk2

2 �
1
N

.
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Proof (of Claim 1). Compute that

kX�Unk2
2 = kXk2 + kUnk2 � 2hX, Uni

= kXk2 �
1
N

.

Proof (of theorem 3). We re-write Equation (5) obtained in [HMR12] in our notation.

EXt,<i [kXt,i | Xt,<i �Ut,ik2
2] = (

i + N
2N

)t.

We note that this translates to a bound of CP(Xt,i | Xt,<i) 
1+( i+N

2N )t·Ni
Ni

via Claim 1.

We apply Theorem 2 to obtain the final bound.

Adv
ncpa
SN[N,r](q)  SD(Xr, U)



vuut ln(2)
2

q

Â
i=1

(
i + N

2N
)r · Ni


r

ln(2)
2

qN(
1
2
+

q
2N

)r.
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3.2 Tighter Composition Theorem via Chi-Square Dis-

tance

3.2.1 Adaptive Versus Non-Adaptive Security

In the previous section, we proved tighter bound for non-adaptive security of

Swap-Or-Not.

One line of work [MPR07, CPS14, MP04] studies the security properties of block ci-

phers under composition assuming information theoretical secure rounds. In [HMR12],

the adaptive security of Swap-Or-Not is proved using the below theorem. Intuitively,

it says that, with double the rounds, you get adaptive security with essentially the

same parameters.

Theorem 4. [MPR07]

Adv
prp
S�1�T(q)  Adv

nprp
S�1 (q) + Adv

nprp
T (q).

Here, we offer evidence that working 2-norm related distances can improve such

a bound. In particular, we will define the Chi-Square distance. We fix some domain

X . Let S be a keyed permutation on X , and U = RP[X ]. Recall that, for some dis-

tinguisher D, we use T(DU) to denote the distribution of transcripts of an interaction

between D and U. We define

Adv
2nprp
S (q) := max

non-adaptive q-query D
c(T(DS); T(DU)),

Adv
2prp
S (q) := max

adaptive q-query A
c(T(AS); T(AU)).

We prove a stronger version using the Chi-Square advantage.
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Theorem 5.

Adv
2prp
S�T (q)  Adv

2nprp
S�1 (q) · Adv2nprp

T (q).

Proof. For any transcripts of the form,

t =
�
(x1, y1), (x2, y2), . . . , (xq, yq)

�
.

We consider the decomposition, t = (x, y), where x consists of the q input values (could

be a result from a backward query), and y consists of q output values (could be the

input of a backward query). Notice that, for non-adaptive distinguishers, the proba-

bility of attaining x is specified by D and independent of y. We use T[x, y] to denote

the probability that T maps x to y. We let p⇤ = 1
(M)q

be the probability mass of each

transcript in T(U). Notice that for any x, y, Âz(T[x, z]� p⇤) = Âz(S[z, y]� p⇤) = 0. If

we fix a deterministic q-query distinguisher A. Then, the set of potential transcript for

AU is of size M(M� 1) · · · (M� q + 1) := (M)q, since conditioned on t queries, there

are always M� t + 1 possibilities for the next (x, y) regardless of the direction of the

queries. Hence, non-adaptive and adaptive q-query distinguisher will have potential
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transcripts of the same cardinality. We use T(U) to denote T(AU). We compute that,

Adv
2±prp
S�1�T(q) =

s
|T(U)|Â

x,y
(S�1 � T[x, y]�U[x, y])2

=

vuut|T(U)|Â
x,y

 

Â
z

T[x, z] · S�1[z, y]� p⇤
!2

=

vuut|T(U)|Â
x,y

 

Â
z
(T[x, z]� p⇤ + p⇤) · (S�1[z, y]� p⇤ + p⇤)� p⇤

!2

=

vuut|T(U)|Â
x,y

 

Â
z
(T[x, z]� p⇤) · (S�1[z, y]� p⇤)

!2



vuut|T(U)|Â
x,y

 r
Â
z
(T[x, z]� p⇤)2

r
Â
z
(S�1[z, y]� p⇤)2

!2



vuut|T(U)|2 ·
 

1p
|T(U)|

Adv
2�nprp
T (q) · 1p

|T(U)|
Adv

2�nprp
S�1 (q)

!2

 Adv
2�nprp
S�1 (q) · Adv2�nprp

T (q).

3.2.2 Properties of Chi-Square Distinguishing Advantage

Behavior under Conditioning

Let X, Y, Z be random variables. For notational convenience, we define

c(X, Y | Z) := c((X, Z); (Y, Z)).

Unlike k · k2, c behaves well under conditioning.
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Lemma 7. If Z is independent of X, Y, then

c(X, Y) = c(X, Y | Z).

Proof.

c(X, Y | Z) =

s

Â
a,b

(PX(a)PZ(b)� PY(a)PZ(b))2

PY(a)PZ(b)

=

s

Â
a,b

Z[b]
(PX(a)� PY(a))2

PY(a)

=

s

Â
a

(PX(a)� PY(a))2

PY(a)
(Â

b
PZ(b))

= c(X, Y).

Double-Sided Point-Wise Proximity

In the section, we show how to bound c using double-sided point-wise proximity.

Lemma 8. Let X be a random variable, and let U be the uniform over the same support. We

say that X satisfy (e, d)-proximity if for all x,

(1� e)
1
|U|  Pr [X = x]  (1 + d)

1
|U| .

If X satisfy (e, d)-proximity, then

c(X, U) 
p

ed.
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Proof. We rewrite c in terms of variance, and apply Bhatia–Davis inequality [BD00].

c(X, U) =

s
|U|(Â

w
PX(w(2� 1

|U| )

=

s
|U|2(Â

w

1
|U|PX(w)2 � (Â

w

1
|U|PX(w))2

=
q
|U|2Var[PX(U)]


s

|U|2(max
x

Pr [X = x]� 1
|U| )(

1
|U| �min

x
Pr [X = x])


s

|U|2e
1
|U|d

1
|U|


p

ed.

3.2.3 Potential Application to Swap-Or-Not

To apply our new composition theorem to Swap-Or-Not, we need a bound on

Adv2nprp. In our previous setup of notation, it amounts to bounding

c(Xt, U).

However, the technique from [HMR12] and [Tes14] does not apply directly to c. The

main difficulty is that c does not satisfy triangle inequality and one cannot apply the

hybrid technique. We leave it as an open problem.
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Chapter 4

Leftover Hash Lemma for Joint Leakage

The classical leftover hash lemma [HILL99] has seen wide usage in cryptography, es-

pecially in leakage resilient cryptography. Here, inspired by the Universal Computa-

tional Extractors assumption [BHK13], we derive a variant of Leftover Hash Lemma

for joint leakage.

4.1 Preliminaries

4.1.1 Universal Computational Extractors

Universal Computational Extractor (UCE), is a security assumption on hash func-

tions, captured by the security game in Figure 4.1. Let

AdvUCE
H,S ,A(l) := 2Pr [UCE[H,S ,A]) 1]� 1.

With slight abuse of notation, we say that H 2 UCE[S ] if AdvUCE
H,S ,A is negligible for all

efficient A.
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Game UCE[H,S ,A]

b $ {0, 1}
hk

$ H.Gen()
z $ SHash[hk,b]()

b0 $ D(hk, z)
return (b = b0)

Proc Hash[hk, b](x) :
if T[x] = ? then

if b = 0 then
T[x] Hhk(x)

else
T[x] $ {0, 1}H.ol

return T[x]

Figure 4.1: Game defining UCE security for a hash family H, source S , and distinguisher D.

UCE Sources A UCE source, S , is different compared to a source specified in Sec-

tion. A UCE source, S , is a randomized oracle algorithm, taking exactly one oracle,

Hash. S shall make some queries to Hash before returning some leakage. UCE is a class

of assumptions. For certain UCE sources, the notion is not achievable. For instance,

the UCE source, S could leak the query point, x, along with the hash value y = H(x).

Then, with all by 1
2n probability, an adversary can predict b in the UCE game by check-

ing if H(x) = y. The study of UCE involves exploring the feasibility, construction, and

applications of UCE for different class of sources. Several interesting restrictions of

sources has been studied.

Split UCE Sources A split UCE source S = splt[S0,S1] is one that is generated in

two stages. First, S0 generates a list of input points x with leakage L0. Then, the

hash values y = Hash(x) is given to S1, producing leakage L1. The overall leakage is

L = (L0, L1). The pseudocode of splt[S0,S1] is given in Figure 4.2. The class of split

sources is denoted S splt.

Statistical Unpredictable UCE Sources A UCE source, S is statistically unpredictable

if the query points x of S is statistically unpredictable given the output of S . More

35



Leftover Hash Lemma for Joint Leakage Chapter 4

Source splt[S0,S1]Hash :
(L0, x) S0()
for i = 0, . . . , |x| do

y[i] Hash(x[i])
L1

$ S1(y)
L (L0, L1)
return L

Figure 4.2: Pseudocode defining the split source S = splt[S0,S1].

concretely, for L $ S(1l) and x be the query points of S , we require

H•(x | L)

to be a negligible function of l. The class of statistically unpredictable sources is de-

noted Ssup.

Other conventions We can also classify UCE sources by the number of distinct queries

that it makes to the hash function. We use Sq to denote the class of sources making

exactly q distinct queries.

Connections to Extractors

By construction, the assumption UCE[S1,S splt,Ssup] is essentially requiring a fam-

ily of hash function to be “extractors”.

4.2 Leftover Hash Lemma for Joint Leakage

Let us look up the assumption without the Ssplt requirement, i.e. UCE[S1,Ssup]. We

name this case “joint leakage”, for the leakage depends on both the input and output

to the hash function. Since there is only one query, we let the query point be x. Let u
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be uniform in the output space of Hash. Then, the assumption UCE[S1,Ssup] translates

to,

(s, L(x, hs(x))) ⇡c (s, L(x, u)).

We now prove that universal hash functions is UCE[S1,Ssup] for appropriate parame-

ters.

Theorem 6 (Leftover Hash Lemma for Joint Leakge). Let k = H•(x | L(x, u)). Let h be

an universal hash function with output length m. Let u be uniform in the output space of h.

Let s be a uniform random seed for h. Then,

(s, L(x, u)) ⇡s,e (s, L(x, hs(u))),

where e = 1
2

p
24m�k.

Proof. By Lemma 5,

H•(x | L(x, u), u) � k�m.

Notice that since s is independent from x. Let u0 be an i.i.d copy of u. By the Leftover

Hash Lemma (Lemma 1),

(s, L(x, u), u, hs(x)) ⇡s,e (s, L(x, u), u, u0), (4.1)

where

e =
1
2

p
2m�(k�m) =

1
2

p
22m�k.

Let A, B be the two distribution on left and right side of Equation 4.1, respectively. Let

W be the sample space of A and B. Note that W consists of a 4-tuples. Define event

E ✓ W to be event where the third and fourth component collide, i.e. E = {(a, b, c, d) 2

W | c = d}. Since u is uniform and independent of h(x), Pr [A 2 E] = 1
2m . Since u is
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uniform and independent of u0, Pr [B 2 E] = 1
2m . By Lemma 9, we conclude that

A | E ⇡s,e0 B | E,

where

e0 = 2m 1
2

p
22m�k =

1
2

p
24m�k.

Lemma 9. Let A, B be two distributions over W. Let E ✓ W be an event such that Pr [A 2 E] =

Pr [B 2 E] = p. Then,

SD(A | E; B | E)  SD(A; B)
p

.

Proof. It is easily obtained by expanding the definition of statistical distance.

SD(A | E; B | E) =
1
2 Â

w2E

����
PA(w)
PA(E)

� PB(w)
PB(E)

����

=
1
p
· 1

2 Â
w2E

|PA(w)� PB(w)|

 1
p
SD(A; B).

4.3 Construction of UCE[S q\S sup] with Constant Output

Length

In this section, we extend the result obtain from the previous section to multiple

queries. This amounts to extending the joint-leakage LHL to 2q-wise independent

hash functions.
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Theorem 7 (Leftover Hash Lemma for Joint Leakge). Let h be a 2q-wise independent

hash function. Let u be q independently uniform samples from the output space of h. Let s be a

uniform random seed for h. Let x be q-ary distribution over the input space of h. Suppose that

H•(x | L(x, u)) � k. Then,

(s, L(x, u)) ⇡s,e (s, L(x, hs(x))),

where e = 1
2

p
24qm�k.

Proof. The proof is very similar to the proof of Theorem 6, hence we will be brief here.

By Lemma 5, we have that H•(x | L(x, u), u) � k� qm. We claim that,

(s, L(x, u), u, hs(x)) ⇡s,e (s, L(x, u), u, u0), (4.2)

with e = 1
2

p
2k�2qm. This follows by computing that CP(hs(x) | s, L(x, u), u) =

1+2k�2qm

2qm , which follows from the 2q-wise independence of h. Lastly, we use 9 on the

event E = {(a, b, c, d) 2 W | c = d}, where W is the sample space both distribution in

Equation 4.2, to conclude the theorem.

4.4 Construction of UCE[S q \ S sup \ S splt] with Polyno-

mial Output Length

In this section, we attempt the construct multiple query UCE without compromis-

ing on the output length.
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4.4.1 Extreme Lossy Functions (ELF)

Definition 9. An extremely lossy function, ELF, consists of an algorithm ELF.Gen. ELF.Gen

takes in two parameter M (with log(M) implicitly being the security parameter) and r 2 [M],

and outputs a description of a function f : [M]! [N], such that

• f is efficiently computable (in log(M)).

• If r = M, then f is injective with overwhelming probability.

• If r < M, then | f ([M])|  r with overwhelming probability.

• For any polynomial p and non-negligible e, there exists a polynomial q such that the

following holds: any adversary running at most time p has less than e advantage in

distinguishing ELF.Gen(M, M) from ELF.Gen(M, r) for any r � q(log(M)).

4.4.2 Our construction

Let h be an 2q-wise independent function with output space [M] and seed length

d1. Let h0 be an universal hash function with seed length d2 and output length 1
2 log(M).

Let f be an ELF with input domain [M]. Consider the hash function construction in

Figure 4.3.

Theorem 8. Let S be a q-query split source with statistical unpredictability k. If q 2

O(k/ log(l)), the construction H1[q] is a secure UCE[S ] hash function.

Proof. The proof proceeds by using hybrids, which are parameterized by r that will

by specified later. The following games will be based off of the UCE game, except

that the games will return b0, the value returned by D. Notice that, in this setup,

Pr [G0 ) 1]� Pr [G4 ) 1] is upper-bounded by the UCE advantage.

• G0 is the UCE game with the hash function, i.e. b = 0 in game UCE[H1[q],S ,D].
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Proc H1[q].KG() :

f $ ELF.Gen(M, M)

s1
$ {0, 1}d1

s2
$ {0, 1}d2

return (fk, s)

Proc H1[q](hk, x) :
return h0s2

( f (hs1(x)))

Figure 4.3: Construction H1[q]. h is a 2q-wise independent hash function, h0 is a
universal hash function.

• G1, we switch f to be lossy in the underlying construction of H1[q], i.e. f $ 

ELF.Gen(M, r).

• G2, we replace the q inputs to f to be uniformly chosen in the input space of f .

• G3, we switch f back to be injective in H1[q], i.e. f $ ELF.Gen(M, M).

• G4 is the UCE game with RO, i.e. b = 1 in the game UCE[H1[q],S ,D].

Suppose towards a contradiction that a distinguisher D, with running time tD,

together with source S , with running time tS , has non-negligible advantage e in win-

ning the UCE game. We will reach contradiction by bounding the advantage through

our sequence of hybrids above. Let t = poly(tD, tS) to be the maximum running time

of all five games G0, . . . , G4. Let e0 = e/3. By the ELF security, we can pick some

r 2 poly(l) such that games G0, G1 and G2, G3 are close, i.e.

Pr [G0 ) 1]� Pr [G1 ) 1] < e0, (4.3)

Pr [G2 ) 1]� Pr [G3 ) 1] < e0. (4.4)
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It remains to bound the distance between G1, G2 and G3, G4. We observe that the

distance between G1 and G2 can be bounded using the Generalized Leftover Hash

Lemma 1, since f is independently chosen here.

Pr [G1 ) 1]� Pr [G2 ) 1]  SD((s, z, f (hs(x))); (s, z, f (u)) 
r

rq

2k .

This advantage is negligible for polynomial r as long as k� c · q log(l) 2 w(log(l)).

Which is achievable as long as k
log(l) 2 w(q). Observe that, in G3, inputs to h2 are in-

dependently random. Hence, we can simply apply the standard leftover hash lemma

to obtain

Pr [G3 ) 1]� Pr [G4 ) 1]  SD((s, z, h0( f (u))); (s, z, u))  2�
log(M)

4 .

Now, we have that the UCE advantage of A is bounded by

Pr [G0 ) 1]� Pr [G4 ) 1]  2e

3
+

r
rq

2k + 2� log(M)/4,

which is asymptotically smaller than e. Hence, we reach a contradiction and H1[q]

must be UCE[S ] secure.

4.5 Construction of UCE[S q\S sup] with Polynomial Out-

put Length

To prove security against non-split sources, the main difficulty is dealing with joint

leakage. We will use the same sequence of hybrid. The proof differ in bounding the

distance of G2 and G1. To obtain the new bound, we observe the following variant of
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leftover hash lemma.

Lemma 10 (Crooked Leftover Hash Lemma for Joint Leakage). Let h be a 2q-wise inde-

pendent function with input space [N]. Let X be some distribution over ([N])q and let U be

uniform over ([N])q. Let L be an arbitrary function such that H•(X | L(X, U)) � k. Let r

be the bound on the image size of f . Then,

SD(s, L(X, f (U)); s, L(X, f (hs(X))))  (r +
r2

1� re
)e,

where e = 1
2

q
rq

2k . In particular, when r is polynomial (in the security parameter), the distance

is negligible.

Proof. First we observe that since s is independently picked, H•(X | s, L(X, f (u))) �

k. By the leakage lemma, H•(X | s, L(X, f (u)), f (u)) � k�m. Hence,

s, L(X, f (u)), f (u), f (h(x)) ⇡s,e s, L(X, f (u)), f (u), f (u0)

We define the event E to be the event that the third component collides with the fourth

component. The right distribution admits event E with probability CP( f (u)) � 1
r . The

left distribution admits event E with probability within CP( f (u)) ± e. Observe that

we need to compute SD(A | E; B | E). The result follows from the lemma below and

the Generalized Leftover Hash Lemma 1.

Lemma 11 (Closeness Under Conditioning). Let A, B be two distribution over W. Let

E ⇢ W be an event. Suppose that Pr [B 2 E] � p � SD(A; B), then

SD(A | E; B | E)  (
1
p
+

1
p(p� e)

)SD(A; B).
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Proof. Let e = SD(A; B). Compute that

SD(A | E; B | E) = Â
w2E

PA|E(w)>PB|E(w)

PA(w)
Pr [A 2 E]

� PB(w)
Pr [B 2 E]

 Â
w2E

PA|E(w)>PB|E(w)

PA(w)
Pr [B 2 E]� e

� PB(w)
Pr [B 2 E]

= Â
w2E

PA|E(w)>PB|E(w)

PA(w)
Pr [B 2 E]

Pr [B 2 E]
Pr [B 2 E]� e

� PB(w)
Pr [B 2 E]

= Â
w2E

PA|E(w)>PB|E(w)

PA(w)
Pr [B 2 E]

(1 +
e

Pr [B 2 E]� e
)� PB(w)

Pr [B 2 E]

= Â
w2E

PA|E(w)>PB|E(w)

PA(w)
Pr [B 2 E]

(1 +
e

p� e
)� PB(w)

Pr [B 2 E]

 e

Pr [B 2 E]
+

Pr [A 2 E]
Pr [B 2 E]

· e

p� e

 e

p
+

e

p(p� e)
.

We now prove the following theorem, for the same construction H1[q].

Theorem 9. Let S be a q-query UCE source with statistical unpredictability k. If q 2

O(k/ log(l)), the construction H1[q] is a secure UCE[S ] hash function.

Proof. We use the same four hybrids. Notice that the only difference with considering

non-split sources is the difference between G1 and G2. By Lemma 10, we need

(r +
r2

1� r
p

rq2�k
)
p

rq2�k (4.5)

be to negligible, where r is not polynomial in l. Suppose that q 2 O(k/ log(l)). Then,
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rq2�k is negligible. Hence, 1� r
p

rq2�k is negligibly close to 1. Finally, we conclude

that 4.5 is negligible. This, with the rest of the proof of Theorem 8, concludes the proof

of Theorem 9.
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Chapter 5

Unified Lossy Primitive: Lossy

Deterministic Encryption

5.1 Preliminaries

Sources Inspired by recent works [BHK13, BS16], we offer a parameterized secu-

rity definitions based on distributions. A source, D, is a (potentially) inefficient ran-

domized algorithm, taking an input q, and generates q output points together with

leakage z. In this thesis, we will restrict to block-sources. D is a 1-block-source with

min-entropy k if for (x1, . . . , xq)
$ D(q), H•(xi | x<i) � k for all 0  i  q.

5.2 Survey of Existing Results

5.2.1 Lossy Trapdoor Functions

A Lossy Trapdoor family of function is a family of trapdoor functions with two

modes of key generation. Formally, it consists of three algorithms (KG, Eval, Inv).
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• In injective mode, KG(0) generates (pk, sk) with pk being the public evaluation

key and sk being the secret trapdoor. We require that Inv(sk, Eval(pk, ·)) to be

the identity function.

• In lossy mode, KG(1) generates (lk,?), with lk being the public evaluation key

and no trapdoors. Additionally, Eval(lk, ·) should have image size at most 2n�k.

• Furthermore, injective keys and lossy keys are computationally indistinguish-

able, i.e.

{pk : pk $ KG(0)} ⇡c {lk : lk $ KG(, 1)}.

5.2.2 Deterministic Encryption

A deterministic encryption scheme is a public-key encryption scheme that is de-

terministic. However, with the absence of encryption randomness, schemes cannot

achieve the standard IND-CPA security anymore. In literature, handful of definitions

are proposed, and they turn out to be equivalent. Below we present the PRIV security

[BFOR08].

An deterministic encryption scheme DE = (KG, Enc, Dec) is said to be PRIV[D]-

secure if the advantage, Pr [GPRIV[DE,D,A]) 1], is negligible in l for any efficient

A.

Notice that here D generates a q outputs, each with two component. The two com-

ponent could be arbitrarily correlated. We will construct DE that is PRIV[D]-security

for 1-block-source D.
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Game GPRIV[DE,D,A]():

b $ {0, 1}
((x0, x1), z) $ D(q)
pk

$ DE.KG
c = DE.Enc(pk, xb)

b0 $ A(c, z)
return (b = b0)

Figure 5.1: Game defining the PRIV security of DE.

5.2.3 Lossy Encryption

Similar to LTDFs, Lossy Encryption also has two modes. However, the lossiness

property implies something different about the encryption. Formally, a Lossy Encryp-

tion scheme is a collection of three algorithm (KG, Enc, Dec) that has the following

properties.

• In injective mode, KG(0) generates (pk, sk). We require that Dec(sk, Enc(pk, m)) =

m for all m in the message space.

• In lossy mode, KG(1) generates (lk,?), and Eval(lk, ·) defines a function whose

image size is at most 2n�k.

• We require that the two modes are indistinguishable, i.e

{pk : pk $ KG(0)} ⇡c {lk : lk $ KG(1)}.

• We require that under the encryption randomness (r sampled uniformly ran-

domly), the ciphertext of any two plaintext, x, x0, are statistically close, i.e. it
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Proc LE.KG():

(fpk, fsk) $ LT.KG()
hk

$ {0, 1}d

pk (fpk, hk)
sk (fsk, hk)
return (pk, sk)

Proc LE.Enc(pk, m, r):
(fk, hk) pk
c1  F(fk, r)
c2  m� hhk(r)
return (c1, c2)

Proc LE.Dec(sk, c):
(fsk, hk) sk
(c1, c2) c
r  LT.Inv(fsk, c1)
m h(r)� c2
return m

Figure 5.2: Construction of Lossy Encryption: LE[LT]. h is a universal hash function
with seed length d and output length m. [BHY09]

Proc DE.KG():

(fpk, fsk) $ LT.KG(0)
(ppk, ssk) $ PKE.KG()
hk

$ {0, 1}d

pk (fpk, ppk, hk)
sk (fsk, ssk, hk)
return (pk, sk)

Proc DE.Enc(pk, m):
(fpk, ppk, hk) pk
y = LT.Eval(fpk, m)
r = h(hk, m)
c PKE.Enc(ppk, y, r)
return c

Proc DE.Dec(sk, c):
(fsk, ssk, hk) sk
c0  PKE.Dec(ssk, c)
m LT.Inv(fsk, c0)
return m

Figure 5.3: The Encrypt-with-Hardcore Construction of Deterministic Encryption,
DE[PKE]. PKE is a regular public-key encryption scheme. h is a universal hash func-
tion with seed length d and output length equal to the length of randomness of PKE

holds with negligible e that

Enc(lk, x, r) ⇡s,e Enc(lk, x0, r).

5.2.4 Constructions Using LTDF

LTDF has been used to construct Deterministic Encryption and Lossy encryption.

One common method is to use a hardcore for LTDF to achieve security in Lossy and

Deterministic Encryption. We highlight two existing constructions known in literature

in Figure 5.2.4 and 5.2.4.
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5.3 Unifying Definition: Lossy Deterministic Encryption

We show that a statistically-lossy version of Deterministic Encryption unifies the

definition of deterministic encryption, lossy encryption, and hedged encryption.

Definition 10. Let D be a source, e : N ! R be a function. We say that an encryption

scheme LDE = (KG, Enc, Dec) is a (D, e)-Lossy Deterministic Encryption if the following

holds.

• The following two distributions are computationally indistinguishable.

{pk : pk $ KG(0)} ⇡c {lk : lk $ KG(1)}.

• Let l some polynomial of security parameter l. For any m0, . . . , ml
$ D(l), it holds

with overwhelming probability (over sampling lk
$ KG(1)) that

Enclk(m1), . . . , Enclk(ml) ⇡s,e(l) Enclk(u1), . . . , Enclk(ul),

where u1, . . . , ul are independently uniformly random messages over the plaintext space.

In this thesis, we focus on 1-block-source D. If D is a 1-block-source and an encryption scheme

is (D, e)-LDE, then we have e(n)  ne(1). Hence, alternatively, we write (k, e)-LDE to

mean (D, ne) for a 1-block-source D with component-wise entropy k.

5.3.1 Unifying Construction from LTDFs

It is known that construction of LTDF from DDH and LWE are already determinis-

tic encryptions schemes, since the LTDF is a strong extractor under the randomness of

lk. However, constructions of LTDF from QR, DCR are not directly extracting [Wee12].
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Proc ELT.KG(b):

fk
$ LT.KG(b)

hk
$ {0, 1}d

return (fk, hk)

Proc ELT.pk(m):
(fk, hk) pk
return Ffk(Hhk(m))

Proc ELT�1
pk (c):

m H�1
hk (F�1

fk (c))
return m

Figure 5.4: Construction of Extracting LTDF

Proc LDE.KG(b):

(pk, sk) $ ELT.KG(b)
return (pk, sk)

Proc LDE.Encpk(m, r):
return Fpk(r)

Proc LDE.Decpk(c):
m [(F�1

pk (c)]l1
return m

Figure 5.5: Construction of Lossy Deterministic Encryption from any Extracting LTDF.

Definition 11 (Extracting LTDF). A LTDF, LT, is (k0, e)-extracting if for (pk,?) $ LT.KG(1),

and for any distribution of messages, X over the input space M, such that H•(X) � k0, we

have that

LT.Eval(pk, X) ⇡s,e LT.Eval(pk, UM).

Extracting LTDF from any LTDF We note that the Generalized Leftover Hash Lemma

(Theorem 1) gives rise to an extracting LTDF. Let H be a pairwise independent permu-

tation over {0, 1}n with seed length d, and let F be a (n, k)-LTDF, whose lossy image

size is at most 2n�k. The construction in Figure 5.3.1 is an (k0,
p

2n�k�k0)-extracting

(n, k)-LTDF.

Lossy Deterministic Encryption from Extracting LTDFs Assuming an extracting

LTDF, we use the pad-and-deterministic (PtD) technique [BBN+09]. Let F be an (k0, e)-

extracting (n, k)-LTDF. Then the below construction is a secure (k0, e)-lossy determin-

istic encryption scheme.
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Message length Randomness length
EwH n� k� 2 log(1/e) n

Construction from LDE n� k� 2 log(1/e) k + 2 log(1/e)

Table 5.1: Table comparing EwH and LE from LDE, using the same (n, k)-LTDF.

Comparision of Parameters Table 5.3.1 compares Encryption-with-Hardcore (EwH)

and the construction from LDE, using the same (n, k)-lossy trapdoor family. Construc-

tion of LE from LDE uses less randomness to encrypt the same message space with

the same closeness parameter e.

5.4 Equivalence of Lossy Deterministic Encryption and

Lossy Trapdoor Functions

In [HO13], it was observed that Lossy Encryption implies LTDF if the length of the

randomness is shorter than the message length. In particular, it was shown that, with

overwhelming probability, the function LE.Enc(lk, ·, hs(·)) is lossy. This result leaves

open the question of whether there is an equivalence between all aforementioned lossy

primitives.

In the non-lossy case, we know that there does not exists black-box construction

of Trapdoor functions from Public-Key Encryption schemes [GMR01]. Hence, finding

such an equivalence in the statistical case is interesting since we know such equiva-

lence does not hold in the computational case.

Unlike Lossy Encryption, Lossy Deterministic Encryption has a distributional as-

sumption that is stronger. The intuition here is that the Lossy Deterministic Encryp-

tion assumption is strong enough to directly imply LTDF. We present a simple lemma

to support our claim.
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Lemma 12. Let f : M ! N be any function. Suppose that |M| = 2n. Suppose that

for any distribution, X, on M, such that H•(X) � k, we have f (X) ⇡s,e f (UM). Then,

| f (U)|  (2k�n + e) · |M|, i.e. f is (n, log(2k�n + e)n)-lossy.

Proof. Pick a flat distribution, X, with minimum entropy k (uniform over 2k elements).

Notice that | f (X)|  2k. By hypothesis, we have that f (X) ⇡s,e f (UM). Define B =

{w 2 N | Pr [ f (X) = w] < Pr [ f (UM) = w]}. Notice that | f (UM)|  | f (X)| + |B|

and that Âw2B Pr [ f (UM) = w]� Pr [ f (X) = w]  e. We compute,

e � Â
w2B

Pr [ f (UM) = w]� Pr [ f (X) = w]

� Â
w2B

Pr [ f (UM) = w]

� Pr
h
UM 2 f�1(B)

i
.

Hence, |B|  | f�1(B)|  |M|e, since UM is uniform. Hence, | f (UM)|  | f (K)|+ B 

2k + e2n = (2k�n + e)|M|.

Observe that LDE and LTDF differs only in how “lossiness” is defined. Using the

above lemma to relate the two notions of lossiness, the following theorem follows

naturally.

Theorem 10. Any Lossy Deterministic Encryption Scheme with message length n, that is

secure for messages with min-entropy at least k and closeness e, is also a (n, log(2k�n + e)n)-

Lossy Trapdoor Function.
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