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1 Introduction

Randomness is crucial in cryptography, especially for key generation,
which is usually the first step in any cryptographic protocol. Tradition-
ally, there are two types of random number generators (RNG), namely
true random number generators (TRNG) and Pseudorandom Number
Generators (PRNG). A PRNG will receive a initial random seed of a
given security level and produce seemingly randomness forever. A hybrid
construction will incorporate true randomness into this process, allowing
the RNG to accumulate entropy were it to be attacked by an adversary.
However, special definition of security is needed in this case. Our first
intuition for such an construction was to use establised Elliptic Curve
random number generators and “jump” between curves using outside
randomness. However, a further investigation into the structure of map-
pings between curves and the underlying security definitions of RNG
showed that this might not be such a good idea. In addition, heuristic
Hybrid constructions are already in use on popular operating systems
such as iOS and Windows. And a formal construction and analysis was
done by Dodis et al [2].

2 Preliminaries

For the context of this poster, let K denote a finite field such that
charK 6= 2. For n ∈ N, [n] denotes the set {1, ..., n}. δi,j is the
Kronecker delta function, defined to be 1 if i = j and 0 otherwise.
The projective 2-space over K, P 2(K), is defined to be, P2(K) =
(K3 − (0, 0, 0))/ ∼, where

(a, b, c) ∼ (x, y, z) ⇐⇒ ∃λ 6= 0 ∈ K : λ(a, b, c) = (x, y, z)

Let S be an non-empty finite set, then X
R← S means X is a random

variable taking values uniformly random from S. Let R be a random
variable, then Y ← R means that Y is another random variable that is
independent and identically distributed to Y . Furthermore, we assume
that any two random variables declared using ← are independent.

3 Elliptic Curves

Definition An elliptic curve is a pair (C,OC), where C is a smooth
projective curve (projective variety of dimension one) of genus one (see
[5] for precise definitions), with one specified base point, denoted OC .

With the extinguished point, every elliptic curve has a natural group
structure under which the extinguished point is the identity ([5, III.3]).

3.1 Edwards Curves

A Twisted Edwards curve is given by the equation

ax2 + y2 = 1 + dx2y2 (1)

, where a, d, x, y ∈ K, with the base point (0, 1). An twisted Edwards
curve over K is denoted Ea,d(K). For the special case a = 1, we denote
the curve Ed(K), and call it an Edwards curve.

Proposition 3.1. The binary operation, +, defined on Ea,d(K) by

(x1, y1) + (x2, y2) = (
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2
)

gives a group structure on Ea,d(K) with (0, 1) as the identity ele-
ment.

3.2 Maps Between Curves

In order to “jump” between curves, we need some structural preserv-
ing and easily to compute maps between them. This section introduces
rational maps and morphism, which are equivalent on elliptic curves.

Definition Given two (projective) curves C,D. A rational map (de-
fined over K), φ : C(K) → D(K), is a map that can be written as
fractions of homogeneous polynomials (over K). i.e. φ = [f0, f1, f2],
where fi = gi

hi
and gi, hi ∈ K[x, y, z].

Definition Let (C,OC), (D,OD) be elliptic curves. A morphism φ :
C → D such that φ(OC) = OD is called an isogeny.

Theorem 3.2. An isogeny, φ : C → D, defines a group homomor-
phism on the corresponding group structure of C and D.

Theorem 3.3. Let φ : C → D be an isogeny, then the kernel of the
group homomorphism, Kerφ, is finite.

Theorem 3.4. Let φ : C → D be a nonconstant isogeny of degree
m. There exists a unique isogeny, φ̂ : D → C, such that φ̂◦φ = [m],
the multiplication by m isogeny.

With the power of these theorems, it is easy to check that isogenies
define an equivalent relation (and notice that the structure of this equiv-
alence relation depends on the field of definition for the morphisms). If
there exists a nonzero isogeny C → D, we say that C is isogeneous to
D, which is denoted C ∼ D.

Theorem 3.5. (Tate) Let K be a finite field, and C,D be elliptic
curves. Then C ∼K D if and only if #C(K) = #D(K).

Using the above machinery, Bernstein el al. ([1]) showed that an elliptic
curve (over a finite field) has an Edwards form if and only if the order of
it is divisible by 4.

Theorem 3.6. Let E be any elliptic curve over K, then 4 |
#E(K) ⇐⇒ E(K) ∼=K Ed(K).

It is tempting to expand a cryptographic object from one elliptic curve
to the set of isogeneous elliptic curves and use the isogeny to map between
curves. However, we will see that this is does not make the underlying
computational problem harder.

4 Computational Indistinguishability

The notion of semantic security is usually defined against attacking ad-
versaries, which is usually modeled as probabilistic Turing machines, the
(rough) definition of which is given below

Definition A probabilistic Turing machine is a standard Turing ma-
chine such that at each step, the set of possible transitions has a proba-
bility distribution, according to which the Turing machine will take the
next transition.

The notion of computational indistinguishability is crucial in the defi-
nition of pseudorandomness.

Definition A function f : N→ R is negligible if for every positive poly-
nomial p(x), there exists N ∈ N such that for all n > N , |f (n)| < 1

p(n)
.

Definition Two sequence of random varaibles, Sn, Kn for n ∈ N, are
said to be computationally indistinguishable, and denoted as Sn ≈ Kn,
if

|Ps←Sn(A(s) = 1)− P (Ak←Kn
(k) = 1)|

is negligible in n for all polynomially bounded probabilistic Turing ma-
chines A.

5 The Decisional Diffie-Hellman Prob-

lem and a Pseudorandom Generator

Definition Decision Diffie-Hellman problem (DDH)
A sequence of cyclic groups, {Gn | n ∈ N}, where Gn is of bit-length
n, satisfies the DDH condition if for a generator gn of Gn, and given

gan, g
b
n for random integers a, b

R← [|Gn|], gabn is computationally indis-

tinguishable from gcn for c
R← [|G|]. Or more precisely, if

{(gan, gbn, gabn ) | a, b R← [|Gn|]} ≈ {(gan, gbn, gcn) | a, b, c R← [|Gn|]}

The DDH condition captures the average case hardness of the DDH
problem. But for cryptographic purposes, we need worst case hardness.

Theorem 5.1. Let G = {Gn | n ∈ N} be a sequence of groups of

prime order, and let (gn, a, b, c)
R← Gn× [|Gn|]3. Assuming the DDH

condition holds for G, there exists a probabilistic polynomial time
algorithm A that decides, with overwhelming probability whether
c = ab given ga, gb, gc. Or more precisely,

1− P (A(ga, gb, gc) = δc,ab)

is negligible.

There is an easy construction of a input-doubling pseudorandom gen-
erator based on the above results.

Lemma 5.2. Let G = {Gn | n ∈ N} be a sequence of groups of
prime order. Let Gn ∈ G, g be an generator of Gn, a ∈ [|Gn|] and

X
R← [|Gn|]. Then, FGn,g,a : [|Gn|]→ Gn ×Gn, defined by

FGn,g,a(b) = (gb, gab)

is a length-doubling PRG, or equivalent speaking, FGn,g,a(X) ≈
Gn ×Gn.

6 Hybrid Construction

Is jumping between elliptic curves a good way to construct a Hybrid
PRNG? In the last section, we saw that we need prime order groups (or
groups with large prime factors, since we can take a subgroup of such a
prime factor) in order to apply the above theorem. And the hardness of
DDH is directly based on the largest prime factor. Therefore, mapping
between curves does not increase the hardness of the underlying compu-
tationally hard problem.

The difficulty in constructing a Hybrid PRNG is to accumulate en-
tropy properly. Assume that we are given uniform entropy I1, ..., Ik,

we need a construction that accumulates entropy. Dodis et al gave a
simple construction based on polynomial-based universal hash functions
([2]). Here we present a more efficient construction based on squaring
(inspired by Square Hash ([3])). Given a PRG, G : {0,1}n→ {0,1}m,
m > n (such as the one constructed from the previous section), consider
a Hybrid PRNG, which is a set three algorithms, (setup, refresh, next),
defined as follows:

• setup(): output seed = (X,X ′) R← {0, 1}2n, set S = 0n.

• S′ = refresh(S, I) = S + (X + I)2, where S′ is the new state.

• next(): (S′, R) = G(S), where R is the output.

refresh(I) refresh(I) refresh(I)

Figure 1: Entropy Accumulation in Hybrid PRNG
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We saw that isogenies does not help with increasing the difficulty of the
underlying computationally hard problem. What are the uses of isoge-
nies in Cryptography? Can we utilize both the hardness of constructing
isogenies and the DDH condition in a Cryptographic protocol?
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