
Flexible Anonymous Transactions (FLAX):
Towards Privacy-preserving and

Composable Decentralized Finance

Wei Dai

Bain Capital Crypto

February 7th, 2022

Media Attention on DeFi, Sept 2021

Sept. 14, 2021Sept. 05, 2021

Explosion of (Ethereum) DeFi in ’20-’21

DeBank DeFi Pulse

TVL: Total Value Locked ~ Assets under management (AUM) in finance

What is DeFi?

Smart-contract applications operating on distributed ledgers offering financial
services beyond payments, such as asset management, trading, lending, and
financial derivates.

Commercial banksInvestment banksStock exchanges

Central banks

DeFi on Ethereum, by TVL

[AmlerEckeyFaustKaierSandnerScholsser21]
Data from defipulse.com

Lending Assets Trading

Derivatives

Payments

DeFi on Ethereum

[Schär21]

Interface standard
for user and
contracts to own
and use tokens.

More details on Ethereum DeFi

ERC20 Token Standard

“Wrapped” tokens Stablecoins Project tokens

DEXes Lending Assets Derivatives

Aggregators

Ethereum NASDAQ Visa

~20 tx/s ~1,000 tx/s ~7,000 tx/s

DeFi Challenges

Scalability

Vulnerabilities

[WPGKHK21]

DeFi Challenges

Privacy

Legal and regulation

“This asset class is rife with fraud,
scams and abuse in certain
applications … We need additional
congressional authorities to
prevent transactions, products and
platforms from falling between
regulatory cracks.”

Gary Gensler, Chair of SEC, Aug. 2021

“.. the decentralization, openness and
integrity protection of blockchain
technologies pose challenges for
compliance with privacy regulations..”
[AEFKSS21]

“The anonymity and privacy of DeFi protocols
is at present a significantly understudied
area.” [WPGKHK21]

Privacy-preserving smart contracts

• Hawk [KMSWP16]

• Arbitrum [KGCWF18]

• Ekiden [CZKHHJJMS19]

• Zkay [SBGMT19]

• Zexe [BCGMMW20]

• Kachina [KKK21]

Privacy in Blockchains

• Zether [BAZB20,Diamond21]

Seal-bid auction, privacy-preserving PoS

• Manta [CXZ21]

Zerocash w/ token swap

• SwapCT [EMPKB21]

RingCT w/ token swap

• Penumbra

Trust assumptions

Limited composability

No known privacy-preserving solutions for
the current DeFi ecosystem.

Privacy-preserving payments
(Decentralized Anonymous Payments, DAPs)

• Zerocash [BCGGMTV14]

• RingCT [Noether15,SALY17,YSLAEZG20]

• Mimblewimble [Jedusor16,Poelstra16,FOS19]

• Quisquis [FMMO19]

• Zether [BAZB20,Diamond21]

Payments, but towards DeFi

“The anonymity and privacy of DeFi protocols is at
present a significantly understudied area.” [WPGKHK21]

Recall: ERC20 is Central to Ethereum DeFi

[Schär21]

Interface standard
for user and
contracts to own
and use tokens.

Our work

Q: Can we design an

ERC20-like privacy-preserving token standard?

Our answer: Yes.

Current Defi
Computation: Public
Accounting: Public

Proposal
Computation: Public
Accounting: Privacy-preserving

Outline

Existing DAPs
Zerocash [BCGGMTV14]

RingCT [Noether15,SALY17,YSLAEZG20]

Quisquis [FMMO19]

Zether [BAZB20,Diamond21]

Flexible Anonymous
Transactions (FLAX) System
Cryptographic building block

FLAX Token Standard
“Privacy-preserving ERC20”

Privacy-preserving DeFi
Asset pools
Trading / DEXes
Lending

Outline

Existing DAPs
Zerocash [BCGGMTV14]

RingCT [Noether15,SALY17,YSLAEZG20]

Quisquis [FMMO19]

Zether [BAZB20,Diamond21]

Flexible Anonymous
Transactions (FLAX) System
Cryptographic building block

FLAX Token Standard
“Privacy-preserving ERC20”

Privacy-preserving DeFi
Asset pools
Trading / DEXes
Lending

Flexible Anonymous Transaction System

• Account-based syntax: st maintains “encrypted” balances for each pk
• Spending from account pk is authenticated via corresponding sk
• A tx modifies account balances, in a prescribed manner (to be discussed next)
• Notation: tx.XX := tx.AD.XX

Ledger algorithms
st↞ Setup(lid)
st’ / ⊥↞ Process(st, tx)

User algorithms
(pk, sk) ↞ Keygen()
[0, MAX] ∋ bal / ⊥↞ Read(st, sk)
tx / ⊥↞ CreateTx(st, sk, (pk’, amt), val, AD)

st – current ledger state
sk – secret key of tx originator
pk’ – public key of recipient
amt ∈ [0, MAX] – to be hidden transfer amount
val ∈ [-MAX, MAX] – publicly declared net
value change, accessible as tx.val
AD ∈ {0, 1}*– publicly declared associated data,
a key-value store, accessible as tx.AD

Parameter generation: param ↞ ParamGen()

Transaction Types

Credit Tx
ctx↞ CreateTx(st, sk, val = 1, AD)
Parameterizable with k ∈ [0, MAX], i.e. ctx[k]
“Credit account of sk by k”
Valid for any ledger state, ctx[k].val := k

Debit Tx
dtx↞ CreateTx(st, sk, val, AD) // val < 0
Parameterizable with k ∈ [val, 0], i.e. dtx[k]
“Debit account of sk by k”, dtx[k].val := k

Transfer Tx
ttx↞ CreateTx(st, sk, (pk’, amt), val, AD)
“Debit (tx.val - amt) from account of sk,
credit account of pk’ by amt”, ttx.val := val

sk – secret key of tx originator
pk’ – public key of recipient
amt ∈ [0, MAX] – to be hidden transfer amount
val ∈ [-MAX, MAX] – publicly declared net change
AD – associated data, a key-value store

Main changes from previous syntax (DAPs):
1. Associated data AD
2. Credit and debit transactions

• All txs declare public net change as tx.val
• tx.AD is authenticated by tx originator
• Txs type is public
• tx is valid wrt st if Process(st, tx) ≠ ⊥
• Parameters for dtx and ctx can be

determined at processing time
• ctx should be valid for any st

ctx / dtx / ttx / ⊥↞ CreateTx(st, sk, (pk’, amt), val, AD)

Correctness and Security, Briefly

Correctness
If user has balance b, then she can spend it.

Consistency, security for the ledger
Transactions do not overdraft and declare the correct net value change in tx.val.

Transaction integrity, security for the user, like UF-CMA and INT-CTXT.
Adversary, even with transaction oracle access, cannot forge new tx that
decreases balance of honest users.

Transaction privacy, security for the user
Anonymity for tx originator, and
confidentiality of transfer amt and recipient

Replay protection
Each tx can only be applied once
among a set of honest ledgers.

Properties of FLAX tx (Informal):
• tx.val declares net value change.
• If ⊥ ≠ st’ ⟵ Process(st, tx), no overdrafts

occur.
• Entire tx (esp. tx.AD) is “signed” by sk-

holder.
• tx can be processed exactly once.

Outline

Existing DAPs
Zerocash [BCGGMTV14]

RingCT [Noether15,SALY17,YSLAEZG20]

Quisquis [FMMO19]

Zether [BAZB20,Diamond21]

Flexible Anonymous
Transactions (FLAX) System
Cryptographic building block

FLAX Token Standard
“Privacy-preserving ERC20”

Privacy-preserving DeFi
Asset pools
Trading / DEXes
Lending

FLAX Token Standard

Contract TokenStandard extends ERC20
global bal, st

Constructor:
st↞ FLAX.Setup(this)

FTransfer(TX: Set(tx)):
netval⟵ Σtx ∈ TX tx.val
If (netval ≠ 0) then

bal[caller] ⟵ bal[caller] + netval
Require (bal[caller] ≥ 0)

For tx ∈ TX:
VerifyIntent(tx.intent)
st↞ FLAX.Process(st, tx)

• Privacy-preserving accounting for end-users.

• Contracts use ERC20-interface to use their
tokens. No privacy for contract accounts.

• “FTransfer” provides anonymity for end-user
transactions.

• Limited tx confidentiality.

• Anonymity of tx => Privacy of user.

• VerifyIntent to be explain.

Delegation of Token-use

• ERC20 enables delegation of token-use via “allowance”.

• Users tell TokenA who (contracts) can use their tokens and how much (allowance)

• Our proposal (ticket approach): txs specify their intended usage, act as “ticket”.

• User U give dtxA to Contract C. TokenA only process dtxA if certain conditions are satisfied.

Contract C Contract TokenA

User U “Please use 10
tokens of A from my
account to do XYZ”

“Give me 10 tokens of A
from the account of U”

“Verify that Contract C
can use tokens of user U”
but HOW?

Automated Market Maker (AMM), aka Liquidity Pool

Contract AMM extends Pool
cptAtoB(int) ⟶ int / ⊥

SwapAtoB(dtxA, ctxB, minOut):
out ⟵ cptAtoB(dtxA.val) ; require (out ≥ minOut)
TokenA.FTransfer(dtxA)
TokenB.FTransfer(ctxB[out])

cptAtoB – many implementations
• Constant product (Uniswap)
• Constant sum (Curve)
• Other variants [AngEvaChi21]

A (in reserve)

B (in reserve)

Reserve before

• User spends A in dtxA

• User obtains B with ctxB

• Txs sent to a third contract!

Reserve after

Trade

Sidenote on AMM:

Tx Substitution Attack and Inter-contract Call Stack

Honest user constructs “AMM.SwapAtoB(dtxA, ctxB, minOut)”

Adversary intercepts it, submits the call “AMM.SwapAtoB(dtxA, ctxB’, minOut)”,
where ctxB’ benefit the attacker instead.

Honest inter-contract call stack (ICCS)
AMM.SwapAtoB(dtxA, ctxB, minOut)
TokenA.FTransfer(dtxA)

Malicious ICCS
AMM.SwapAtoB(dtxA, ctxB’, minOut)
TokenA.FTransfer(dtxA)

TokenA

FTransfer(dtxA)

AMM
SwapAtoB

dtxA, ctxB, minOut

TokenA

FTransfer(dtxA)

AMM
SwapAtoB

dtxA, ctxB’, minOut

Authenticating Tx Intent via ICCS

VerifyIntent(Intent)
1. Input Intent is an inter-contract call stack (ICCS) pattern
2. Compares current ICCS with Intent
3. Throws error if matching fails
4. Returns true if matching succeeds

More on ICCS:
• EVM only exposes tx.origin, msg.caller, and current calldata.
• Feasible if a smart-contract call is carried out “at one place”
• Potentially useful in heterogenous contract interactions
• Example: can be used to prevent re-entry attacks

Users must construct dtx and ttx specifying the exact contract-call
intent for usage of their funds.

Constructing Smart Contract Calls

Contract
Func(tx1, …, txn, ctx1, …, ctxm, arg)

1. Construct all credit transactions, ctx1, …, ctxm.

Contract.Func(*, ctx1, …, ctxm, arg)tx1, …, txn

tx – debit or transfer
ctx – credit

2. Construct tx1, …, txn, txi.intent := “Contract.Func(*, ctx1, …, ctxm, arg)”.

intent

Full Example w/ AMM Swap

AMM.SwapAtoB(*, , 20)

Contract AMM

SwapAtoB(dtxA, ctxB, minOut):
Contract TokenA
FTransfer(dtxA):

Contract TokenB

dtxA

ctxB[out]

dtxA

• val: -10

intent

“Swap 10 A to
at least 20 B”

Blockchain

out ⟵ cptAtoB(dtxA.val)
TokenA.FTransfer(dtxA)

VerifyIntent(dtxA.intent)

TokenB.FTransfer(ctxB[out])

ctxB

FLAX Gas Token

• A blockchain transaction is a single debit transaction, paying upto dtx.val for gas.

dtxcall

• val // gas paid limit
• gasprice
• intent

Full smart contract call intent

Consequence: “tx.origin” no longer available, as well as “caller” during the initial call.

Contract.Func(*, ctx1, …, ctxm, arg)tx1, …, txn

Fix a distinguised token, TokenGas.

• dtxcall.intent specifies full contract call, i.e “Contract.Func(tx1, …, txn, ctx1, …, ctxm, arg)”.

Extended Example

AMM.SwapAtoB(*, , 20)

Contract AMM

SwapAtoB(dtxA, ctxB, minOut):

Contract TokenGas

Contract TokenA
FTransfer(dtxA):

Contract TokenB

dtxA

ctxB[out]

dtxA

• val: -10

intent
dtxcall

• val // max fees
• gasprice

intent

“Swap 10 A to
at least 20 B”

Blockchain

out ⟵ cptAtoB(dtxA.val)
FTransfer(dtxA)

VerifyIntent(dtxA.intent)

FTransfer(ctxB[out])

ctxB

Delegation of Token-use

• tx.intent delegate token-use to a particular partial smart contract invocation.
• A non-anonymous FLAX system can be achieved w/ only signatures:

• User simply sign tx = {val: -10, token: A, intent: …}
• Compare to “transfer and call” ERC223: preserve currently used “top-down”

approach, easier to use multiple types of tokens in one call (e.g EnterPool).
• Downside: require read-access to ICCS, not supported on current systems.

Contract C Contract TokenA

User U “Please use 10
tokens of A from my
account to do XYZ”

“Give me 10 tokens of A
from the account of U”

“Verify that Contract C
can use tokens of user U”
but HOW?

Outline

Existing DAPs
Zerocash [BCGGMTV14]

RingCT [Noether15,SALY17,YSLAEZG20]

Quisquis [FMMO19]

Zether [BAZB20,Diamond21]

Flexible Anonymous
Transactions (FLAX) System
Cryptographic building block

FLAX Token Standard
“Privacy-preserving ERC20”

Privacy-preserving DeFi
Asset pools
Trading / DEXes
Lending

Token-denominated Funds (aka pools)

Contract Pool extends TokenStandard
cptEnter(valA, valB) ⟶ (inA, inB, outP)
cptExit(valP) ⟶ (outA, outB)

EnterPool(dtxA, dtxB, ctxP):
(inA, inB, outC) ⟵ cptEnter(dtxA.val, dtxB.val)
TokenA.FTransfer(dtxA[inA])
TokenB.FTransfer(dtxB[inB])
bal[this] ⟵ bal[this] + outP

this.FTransfer(ctxP[outP], this)

ExitPool(dtxP, ctxA, ctxB):
(outA, outB) ⟵ cptExit(dtxP.val)
TokenA.FTransfer(ctxA[outA])
TokenB.FTransfer(ctxB[outB])
this.FTransfer(dtxP)
bal[this] ⟵ bal[this] – dtxP.val

Pool

10 A 20 B

owns underlying
assets

5 P

outstanding shares
(pool tokens)

Enter & Exit rate:
1P = 2A + 4B

• AMM, shown previous, is a pool
that expose additionally SwapAtoB.

• Contract can manage its own assets
arbitrarily.

Collateralized Debt Positions (CDP)

Vault
• Contains collateral, (valcollateral, ctxrefund)
• Records outstanding debt, valdebt

OpenVault
Deposit 10 A
Borrow 20 B

Repay
Repay 20 B
Withdraw 10 A

Liquidate
Pay 20 B
Buys ~10A

Life-cycle of a vault

OpenVault(dtxA, ctxrfd, ctxB, borrow):
… // checks
TokenA.FTransfer(dtxA)
TokenB.FTransfer(ctxB[borrow])
vid ⟵ vaults.push((dtxA.val, borrow, ctxrfd))
Return vid

Repay(vid, dtxB):
… // checks
(coll, debt, ctxrfd) ⟵ vaults[vid]
TokenB.FTransfer(dtxB)
TokenA.FTransfer(ctxrfd[coll])

Liquidate(vid, dtxB, ctxA):
… // checks
(coll, debt, *) ⟵ vaults[vid]
TokenB.FTransfer(dtxB)
TokenA.FTransfer(ctxA[coll])

Contract CDP
global vaults

• Collateralized stablecoins
(Dai stablecoin)

• Extendable to multi-asset
lending w/ interest rates
(Aave, Compound)

DeFi on Ethereum, by TVL

[AmlerEckeyFaustKaierSandnerScholsser21]
Data from defipulse.com

Lending Assets DEXes

Derivatives

Payments

Outline

Existing DAPs
Zerocash [BCGGMTV14]

RingCT [Noether15,SALY17,YSLAEZG20]

Quisquis [FMMO19]

Zether [BAZB20,Diamond21]

Flexible Anonymous
Transactions (FLAX) System
Cryptographic building block

FLAX Token Standard
“Privacy-preserving ERC20”

Privacy-preserving DeFi
Asset pools
Trading / DEXes
Lending

Instantiations

Recall: two main changes in syntax
1. Authentication of associated data.
2. Flexible debit and credit, latter of which can be applied to any state.

1. Adding associated data:
• Tx structure: tx.body and tx.π
• tx.π PoK for R = { (st, tx.body ; sk, …) | “prover knows sk such that ..” }
• tx.AD is authenticated via inclusion in the statement (in particular tx.body)
• Need (weakly) simulation extractability

2. Flexible debit and credit
• Balances hidden via homomorphic commitment / encryption
• Flexibility comes for free

From UTXO-based DAPs

Coin
• Encodes owner pk
• Encodes value (committed, encrypted)
• Spendable knowing sk + (coin secret)

Tx (spend some coins, create some coins)
• Spending info: serial numbers, key images
• New coins: NewCoin1, …, NewCoinm

• Proof

Ledger state (UTXO-set)

Coin Coin Coin…

ctx (create a coin)
• New coins: NewCoin
• Proof

dtx (spend some coins, refund some coins)
• Spending info: ..
• New coins: NewCoin
• Proof

Covers Zerocash, RingCT, Quisquis,
(and MimbleWimble).

From Zether

• Balance of pk is stored as an ElGammal ciphertext, (gr, gbpkr)
• Ledger state is acc: pk ⟶ G2

Alice

Bob

Charlie

Account
State st

Debit dtx[-c]

+ Proof π

Credit ctx[c]

+ Proof π

Transfer ttx

+ Proof π

Comparisons of Instantiations

m – history size
u – UTXO size
n – accounts
n ≪ u ≪m

Zether-based instantiation give the best
user efficiency, but the worst privacy.

c – coin overhead
r – ring size

Summary

• DeFi has emerged as a key application area for blockchains.

• Privacy is a fundamental challenge for DeFi.

• General purpose privacy-preserving smart contracts are not needed for DeFi.

• FLAX and associated token standard bridge the gap between payments and DeFi.

FLAX
Cryptographic
building block

Privacy-
preserving and
Composable DeFi

Known
techniques
for DAPs

FLAX
Token
Standard

Inter-contract Call Stack

*ePrint:2021/1249

