Flexible Anonymous Transactions (FLAX): Towards Privacy-preserving and Composable Decentralized Finance

> Wei Dai Bain Capital Crypto February 7th, 2022

Media Attention on DeFi, Sept 2021

Explosion of (Ethereum) DeFi in '20-'21

TVL: Total Value Locked ~ Assets under management (AUM) in finance

What is DeFi?

Smart-contract applications operating on distributed ledgers offering financial services beyond payments, such as **asset management**, **trading**, **lending**, and **financial derivates**.

Central banks

DeFi on Ethereum, by TVL

[AmlerEckeyFaustKaierSandnerScholsser21] Data from defipulse.com

DeFi on Ethereum

The DeFi Stack

More details on Ethereum DeFi

DeFi Challenges

Scalability	Ethereum	NASDAQ	Visa	Visa				
ocarability	~20 tx/s ~1,000 tx/s		~7,000 tx/s					
		2.0	Protocol	Loss	Audit	Attack	Date	Ref.
Vulnerabilities	Flash Boys 2.0: Frontrunning in Decentralized Exchanges, Miner Extractable Value, and Consensus Instability		bZx bZx	0.35m 0.63m	\ \	TX sandwich TX sandwich	Feb-15-2020 Feb-18-2020	[122] [123]
			Uniswap dForce Hegic	0.30m 25.00m 0.05m	✓ × ×	Reentrancy Reentrancy	Apr-18-2020 Apr-19-2020 Apr-25-2020	[124] [98]
	Philip Daian Steven Goldfeder Cornell Tech Cornell Tech Cornell.edu goldfeder@cornell.edu sk325	Balancer Opyn Vam	0.50m 0.37m 0.75m		TX sandwich Logical bug	Jun-28-2020 Aug-04-2020	[125] [126] [127]	
	Iddo BentovLorenzCornell TechETib327@cornell.edulorenz.breide	z Breidenbach Ari Juels <i>H Zürich Cornell Tech</i> enbach@inf.ethz.ch juels@cornell.edu	bZx Eminence	8.10m 15.00m	×	Logical bug TX sandwich	Aug-12-2020 Sep-14-2020 Sep-29-2020	[103] [7] [128]
				- 33.80m 0.97m		TX sandwich Logical bug	Oct-26-2020 Oct-26-2020 Nov-04-2020	[111] [10] [129]
Attacking the De	r Fun and Profit	I FIASH LOANS	Cheese Bank Akropolis Value DeFi	3.3m 2.00m 7.00m	v v x	TX sandwich Reentrancy TX sandwich	Nov-06-2020 Nov-12-2020 Nov-14-2020	[130] [8] [112]
Kaihua Qin Liyi	Zhou Benjamin Livshits	Arthur Gervais	Origin 88mph Pickle	7.00m 0.01m 19.70m	v v x	Reentrancy Logical bug Logical bug	Nov-17-2020 Nov-17-2020 Nov-21-2020	[11] [131] [132]
Imperial College London Imperial Co	ollege London – Imperial College Lond	don Imperial College London	Compounder Warp Finance Cover	10.80m 7.80m 9.40m	\ \ \	Logical bug TX sandwich Logical bug	Dec-02-2020 Dec-18-2020 Dec-28-2020	[133] [134] [9]
			Yearn Growth DeFi Meerkat Finance	11.00m 1.30m 32.00m	X X X	TX sandwich Logical bug Logical bug	Feb-05-2021 Feb-09-2021 Mar-04-2021	[135] [136] [137]

Paid Network

DODO

27.00m

2.00m

X Logical bug

✗ Logical bug

[WPGKHK21]

Mar-05-2021 [138]

Mar-09-2021 [139]

DeFi Challenges

Legal and regulation

Gary Gensler, Chair of SEC, Aug. 2021

Forbes

EDITORS' PICK | Aug 27, 2021, 09:01am EDT | 19,525 views

SEC Signs Deal To Investigate DeFi Transactions

"This asset class is **rife with fraud, scams and abuse** in certain applications ... We need additional **congressional authorities** to prevent transactions, products and platforms from falling between regulatory cracks."

Privacy

".. the decentralization, openness and integrity protection of blockchain technologies pose challenges for **compliance with privacy regulations**.." [AEFKSS21]

"The **anonymity and privacy** of DeFi protocols is at present a <u>significantly understudied</u> area." [WPGKHK21]

Privacy in Blockchains

Privacy-preserving payments

(Decentralized Anonymous Payments, DAPs)

- Zerocash [BCGGMTV14]
- RingCT [Noether15,SALY17,YSLAEZG20]
- Mimblewimble [Jedusor16, Poelstra16, FOS19]
- Quisquis [FMM019]
- Zether [BAZB20,Diamond21]

Payments, but towards DeFi

- Zether [BAZB20,Diamond21]
 - Seal-bid auction, privacy-preserving PoS
- Manta [cxz21]
 Zerocash w/ token swap
- SwapCT [ЕМРКВ21] RingCT w/ token swap
- Penumbra

Privacy-preserving smart contracts

• Hawk [кмswp16]	
• Arbitrum [KGCWF18]	Trust assumptions
• Ekiden [сzкннлмs19]	
• Zkay [SBGMT19]	
• Zexe [BCGMMW20]	Limited composability
• Kachina [ккк21]	

"The **anonymity and privacy** of DeFi protocols is at present a <u>significantly understudied</u> area." [WPGKHK21]

No known privacy-preserving solutions for the current DeFi ecosystem.

Recall: ERC20 is Central to Ethereum DeFi

The DeFi Stack

Q: Can we design an

ERC20-like privacy-preserving token standard?

Our answer: Yes.

Current Defi

Computation: **Public** *Accounting*: **Public**

Computation: Public

Accounting: Privacy-preserving

Outline

Existing DAPs

Zerocash [BCGGMTV14]

RingCT [Noether15,SALY17,YSLAEZG20] Quisquis [FMM019]

Zether [BAZB20,Diamond21]

Flexible Anonymous Transactions (FLAX) System Cryptographic building block

Privacy-preserving DeFi

Asset pools Trading / DEXes Lending

"Privacy-preserving ERC20"

Outline

Existing DAPs

Zerocash [BCGGMTV14]

RingCT [Noether15,SALY17,YSLAEZG20] Quisquis [FMM019]

Zether [BAZB20,Diamond21]

Flexible Anonymous Transactions (FLAX) System Cryptographic building block

Privacy-preserving DeFi

Asset pools Trading / DEXes Lending

"Privacy-preserving ERC20"

Flexible Anonymous Transaction System

Parameter generation: param ← ParamGen()

Ledger algorithms st ← Setup(lid) st' / ⊥ ← Process(st, tx)

User algorithms

(pk, sk) \leftarrow Keygen() [0, MAX] \ni bal / $\perp \leftarrow$ Read(st, sk) tx / $\perp \leftarrow$ CreateTx(st, sk, (pk', amt), val, AD)

```
st – current ledger state

sk – secret key of tx originator

pk' – public key of recipient

amt \in [0, MAX] – to be hidden transfer amount

val \in [-MAX, MAX] – publicly declared net

value change, accessible as tx.val

AD \in {0, 1}*– publicly declared associated data,

a key-value store, accessible as tx.AD
```

- Account-based syntax: st maintains "encrypted" balances for each pk
- Spending from account pk is authenticated via corresponding sk
- A tx modifies account balances, in a prescribed manner (to be discussed next)
- Notation: tx.XX := tx.AD.XX

Transaction Types

ctx / dtx / ttx / ⊥ ← CreateTx(st, sk, (pk', amt), val, AD)

Credit Tx

ctx ← CreateTx(st, sk, val = 1, AD)

Parameterizable with $k \in [0, MAX]$, i.e. ctx[k]

"Credit account of sk by k"

Valid for any ledger state, ctx[k].val := k

Debit Tx

dtx ← CreateTx(st, sk, val, AD) // val < 0
Parameterizable with k ∈ [val, 0], i.e. dtx[k]
"Debit account of sk by k", dtx[k].val := k</pre>

Transfer Tx

 sk – secret key of tx originator pk' – public key of recipient amt \in [0, MAX] – to be hidden transfer amount val \in [-MAX, MAX] – publicly declared net change AD – associated data, a key-value store

- All txs declare public net change as tx.val
- tx.AD is authenticated by tx originator
- Txs type is public
- tx is *valid* wrt st if Process(st, tx) $\neq \bot$
- Parameters for dtx and ctx can be determined at processing time
- ctx should be valid for any st

Main changes from previous syntax (DAPs):

- 1. Associated data AD
- 2. Credit and debit transactions

Correctness and Security, Briefly

Correctness

If user has balance b, then she can spend it.

Consistency, security for the ledger

Transactions do not overdraft and declare the correct net value change in tx.val.

Transaction integrity, security for the user, like UF-CMA and INT-CTXT. Adversary, **even with transaction oracle access**, cannot forge *new* tx that decreases balance of honest users.

Transaction privacy, security for the user Anonymity for tx originator, and confidentiality of transfer amt and recipient

Replay protection

Each tx can only be applied once among a set of honest ledgers.

Properties of FLAX tx (Informal):

- tx.val declares net value change.
- If ⊥ ≠ st' ← Process(st, tx), no overdrafts occur.
- Entire tx (esp. tx.AD) is "signed" by skholder.
- tx can be processed exactly once.

Outline

Existing DAPs

Zerocash [BCGGMTV14]

RingCT [Noether15,SALY17,YSLAEZG20] Quisquis [FMM019]

Zether [BAZB20,Diamond21]

Privacy-preserving DeFi

Asset pools Trading / DEXes Lending

Flexible Anonymous Transactions (FLAX) System Cryptographic building block

FLAX Token Standard

"Privacy-preserving ERC20"

FLAX Token Standard

Contract TokenStandard extends ERC20 global bal, st

Constructor:

st ← FLAX.Setup(this)

```
\begin{array}{l} \mbox{FTransfer(TX: Set(tx)):} \\ \mbox{netval} \leftarrow \Sigma_{tx \, \in \, TX} \, tx.val \\ \mbox{If (netval} \neq 0) \, then \\ \mbox{bal[caller]} \leftarrow \mbox{bal[caller]} + \, netval \\ \mbox{Require (bal[caller]} \geq 0) \\ \mbox{For } tx \in TX: \\ \mbox{VerifyIntent(tx.intent)} \\ \mbox{st} \leftarrow \mbox{FLAX.Process(st, tx)} \end{array}
```

- *Privacy-preserving accounting* for end-users.
- Contracts use ERC20-interface to use their tokens. No privacy for contract accounts.
- "FTransfer" provides anonymity for end-user transactions.
- Limited tx confidentiality.
- Anonymity of tx => Privacy of user.
- VerifyIntent to be explain.

Delegation of Token-use

- ERC20 enables delegation of token-use via "allowance".
 - Users tell Token_A who (contracts) can use their tokens and how much (allowance)
- Our proposal (ticket approach): txs specify their intended usage, act as "ticket".
- User U give dtx_A to Contract C. Token_A only process dtx_A if certain conditions are satisfied.

Automated Market Maker (AMM), aka Liquidity Pool

 $\frac{\text{Contract AMM extends Pool}}{\text{cptAtoB(int)} \rightarrow \text{int / } \bot}$

```
SwapAtoB(dtx<sub>A</sub>, ctx<sub>B</sub>, minOut):

out \leftarrow cptAtoB(dtx<sub>A</sub>.val) ; require (out \ge minOut)

TokenA.FTransfer(dtx<sub>A</sub>)

TokenB.FTransfer(ctx<sub>B</sub>[out])
```

- User spends A in dtx_A
- User obtains B with ctx_B
- Txs sent to a third contract!

Sidenote on AMM:

cptAtoB – many implementations

- Constant product (Uniswap)
- Constant sum (Curve)
- Other variants [AngEvaChi21]

Tx Substitution Attack and Inter-contract Call Stack

Honest user constructs "AMM.SwapAtoB(dtx_A, ctx_B, minOut)"

Adversary intercepts it, submits the call "AMM.SwapAtoB(dtx_A , ctx_B ', minOut)", where ctx_B ' benefit the attacker instead.

Honest inter-contract call stack (ICCS) AMM.SwapAtoB(dtx_A, ctx_B, minOut)

Token_A.FTransfer(dtx_A)

Malicious ICCS

AMM.SwapAtoB(dtx_A, ctx_B' , minOut) Token_A.FTransfer(dtx_A)

Authenticating Tx Intent via ICCS

VerifyIntent(Intent)

- 1. Input Intent is an inter-contract call stack (ICCS) pattern
- 2. Compares current ICCS with Intent
- 3. Throws error if matching fails
- 4. Returns true if matching succeeds

Users must construct dtx and ttx specifying the **exact contract-call intent for usage of their funds**.

More on ICCS:

- EVM only exposes tx.origin, msg.caller, and current calldata.
- Feasible if a smart-contract call is carried out "at one place"
- Potentially useful in heterogenous contract interactions
- Example: can be used to prevent re-entry attacks

Constructing Smart Contract Calls

1. Construct all credit transactions, ctx₁, ..., ctx_m.

2. Construct $tx_1, ..., tx_n, tx_i$.intent := "Contract.Func(*, $ctx_1, ..., ctx_m, arg$)".

Full Example w/ AMM Swap

FLAX Gas Token

Fix a distinguised token, Token_{Gas}.

- A blockchain transaction is a single debit transaction, paying upto dtx.val for gas.
- dtx_{call}.intent specifies full contract call, i.e "Contract.Func(tx₁, ..., tx_n, ctx₁, ..., ctx_m, arg)".

Consequence: "tx.origin" no longer available, as well as "caller" during the initial call.

Extended Example

Delegation of Token-use

- tx.intent delegate token-use to a particular partial smart contract invocation.
- A non-anonymous FLAX system can be achieved w/ only signatures:
 - User simply sign tx = {val: -10, token: A, intent: ...}
- Compare to "transfer and call" ERC223: preserve currently used "top-down" approach, easier to use multiple types of tokens in one call (e.g EnterPool).
- Downside: require read-access to ICCS, not supported on current systems.

Outline

Existing DAPs

Zerocash [BCGGMTV14]

RingCT [Noether15, SALY17, YSLAEZG20]

Quisquis [FMM019]

Zether [BAZB20,Diamond21]

Flexible Anonymous Transactions (FLAX) System Cryptographic building block

Privacy-preserving DeFi

Asset pools Trading / DEXes Lending

"Privacy-preserving ERC20"

Token-denominated Funds (aka pools)

```
\frac{\text{Contract Pool extends TokenStandard}}{\text{cptEnter}(\text{val}_A, \text{val}_B) \longrightarrow (\text{in}_A, \text{in}_B, \text{out}_P)}{\text{cptExit}(\text{val}_P) \longrightarrow (\text{out}_A, \text{out}_B)}
```

```
EnterPool(dtx<sub>A</sub>, dtx<sub>B</sub>, ctx<sub>P</sub>):

(in<sub>A</sub>, in<sub>B</sub>, out<sub>C</sub>) \leftarrow cptEnter(dtx<sub>A</sub>.val, dtx<sub>B</sub>.val)

Token<sub>A</sub>.FTransfer(dtx<sub>A</sub>[in<sub>A</sub>])

Token<sub>B</sub>.FTransfer(dtx<sub>B</sub>[in<sub>B</sub>])

bal[this] \leftarrow bal[this] + out<sub>P</sub>

this.FTransfer(ctx<sub>P</sub>[out<sub>P</sub>], this)
```

```
\begin{array}{l} \mathsf{ExitPool}(\mathsf{dtx}_{\mathsf{P}},\mathsf{ctx}_{\mathsf{A}},\mathsf{ctx}_{\mathsf{B}}):\\ (\mathsf{out}_{\mathsf{A}},\mathsf{out}_{\mathsf{B}}) \longleftarrow \mathsf{cptExit}(\mathsf{dtx}_{\mathsf{P}}.\mathsf{val})\\ \mathsf{Token}_{\mathsf{A}}.\mathsf{FTransfer}(\mathsf{ctx}_{\mathsf{A}}[\mathsf{out}_{\mathsf{A}}])\\ \mathsf{Token}_{\mathsf{B}}.\mathsf{FTransfer}(\mathsf{ctx}_{\mathsf{B}}[\mathsf{out}_{\mathsf{B}}])\\ \mathsf{this}.\mathsf{FTransfer}(\mathsf{dtx}_{\mathsf{P}})\\ \mathsf{bal}[\mathsf{this}] \longleftarrow \mathsf{bal}[\mathsf{this}] - \mathsf{dtx}_{\mathsf{P}}.\mathsf{val} \end{array}
```


- AMM, shown previous, is a pool that expose additionally SwapAtoB.
- Contract can manage its own assets arbitrarily.

Collateralized Debt Positions (CDP)

Vault

- Contains collateral, (val_{collateral}, ctx_{refund})
- Records outstanding debt, val_{debt}

Contract CDP global vaults	OpenVault(dtx _A , ctx _{rfd} , ctx _B , borrow): // checksToken _A .FTransfer(dtx _A)Token _B .FTransfer(ctx _B [borrow])vid ← vaults.push((dtx _A .val, borrow, ctx _{rfd}))Return vid				
$ \begin{array}{ c c c c c c c c } \hline \underline{Repay(vid, dtx_{B}):} \\ \hline \dots // checks \\ (coll, debt, ctx_{rfd}) \leftarrow vaults[vid] \\ \hline Token_{B}.FTransfer(dtx_{B}) \\ \hline \end{array} $		<u>Liquidate(vid, dtx_B, ctx_A):</u> // checks (coll, debt, *) ← vaults[vid] Token _B .FTransfer(dtx _B)			
юкеп _А .FIra	nster(ctx _{rfd} [COII])	Ioken _A .Firansfer(ctx _A [coll])			

- Collateralized stablecoins (Dai stablecoin)
- Extendable to multi-asset lending w/ interest rates (Aave, Compound)

DeFi on Ethereum, by TVL

[AmlerEckeyFaustKaierSandnerScholsser21] Data from defipulse.com

Outline

Existing DAPs

Zerocash [BCGGMTV14] RingCT [Noether15,SALY17,YSLAEZG20] Quisquis [FMMO19] Zether [BAZB20,Diamond21]

Privacy-preserving DeFi

Asset pools Trading / DEXes Lending

Flexible Anonymous Transactions (FLAX) System Cryptographic building block

FLAX Token Standard

"Privacy-preserving ERC20"

Instantiations

Recall: two main changes in syntax

- 1. Authentication of associated data.
- 2. Flexible debit and credit, latter of which can be applied to any state.

1. Adding associated data:

- Tx structure: tx.body and tx. π
- tx.π PoK for R = { (st, tx.body ; sk, ...) | "prover knows sk such that .." }
- tx.AD is authenticated via inclusion in the statement (in particular tx.body)
- Need (weakly) simulation extractability

2. Flexible debit and credit

- Balances hidden via *homomorphic* commitment / encryption
- Flexibility comes for free

From UTXO-based DAPs

Coin

- Encodes owner pk
- Encodes value (committed, encrypted)
- Spendable knowing sk + (coin secret)

Tx (spend some coins, create some coins)

- Spending info: serial numbers, key images
- New coins: NewCoin₁, ..., NewCoin_m
- Proof

Covers Zerocash, RingCT, Quisquis, (and MimbleWimble).

ctx (create a coin)

- New coins: NewCoin
- Proof

dtx (spend some coins, refund some coins)

- Spending info: ..
- New coins: NewCoin
- Proof

From Zether

- Balance of pk is stored as an ElGammal ciphertext, (g^r, g^bpk^r)
- Ledger state is acc: $pk \rightarrow G^2$

	Account State st	Transfer ttx	Debit dtx[-c]	Credit ctx[c]
Alice	$(g^{r_A},pk^{r_A}_Ag^{b_A})$	$(g^r,pk^r_Ag^{-c})$	$(g^r,pk^r_Ag^{-c})$	$(g^r,pk^r_Ag^c)$
Bob	$(g^{r_B},pk_B^{r_B}g^{b_B})$	$(g^r,pk_B^rg^c)$	$(g^r,pk_B^rg^0)$	$(g^r,pk_B^rg^0)$
Charlie	$(g^{r_C},pk^{r_C}_Cg^{b_C})$	$(g^r,pk^r_Cg^0)$	$(g^r,pk^r_Cg^0)$	$(g^r,pk^r_Cg^0)$
		+ Proof π	+ Proof π	+ Proof π

FLAX	Ledg	Ledger		Jser	Authentication		
from	Setup	st	Read	Privacy	Mechanism	Structure size	
Zerocash	Trusted	$\mathcal{O}(m)$	$\mathcal{O}(\texttt{st})$	Full	SNARK	$\mathcal{O}(c \cdot \log(m))$	
RingCT	Pub. coin	$\mathcal{O}(m)$	$\mathcal{O}(\texttt{st})$	Tx ring	Ring Sig.	$\mathcal{O}(c \cdot r)$	
Quisquis	Pub. coin	$\mathcal{O}(u)$	$\mathcal{O}(\texttt{st})$	Tx ring	NIZK	$\mathcal{O}(c \cdot r)$	
Zether	Pub. coin	$\mathcal{O}(n)$	$\mathcal{O}(1)$	Acc ring	NIZK	$\mathcal{O}(r)$	

c – coin overhead

r – ring size

m – history size u – UTXO size n – accounts n \ll u \ll m

Zether-based instantiation give the best user efficiency, but the worst privacy.

- DeFi has emerged as a key application area for blockchains.
- Privacy is a fundamental challenge for DeFi.
- General purpose privacy-preserving smart contracts are not needed for DeFi.
- FLAX and associated token standard bridge the gap between payments and DeFi.

