
Structuring Computation for
Privacy-Preserving Apps

Wei Dai

@_weidai

Bain Capital Crypto

April 21, 2022

Do you have prior knowledge
of zero-knowledge proofs?

Zero-Knowledge Proofs (ZKPs)

Prover Verifierπ
x, w 0/1

C

Properties
• Succinct: π is short, verifier runtime is “small”
• Non-interactive: Only one message from P to V
• Transparent: No trusted setup
• Universal: No per-circuit trusted setup

π for x ~ “I know w such that C(x, w) = 1”

History
• Studied since the late 1980s
• Recent explosion, due to Z{ero}cash , Groth16,

Sonic, Marlin, Plonk, …

C - arithmetic circuit, “program execution”
x – public input, w – secret witness

Security
• Completeness: It works!
• Zero knowledge: Verifier learns nothing about w
• Knowledge soundness: Prover knows w

x

Typical verifiers:
Chains, EVM
contracts

Typical provers:
User wallets,
proving services

Do ZKPs solve all privacy
problems for blockchain apps?

(Think Uniswap, Aave, NFT auction)

No.

Agenda of this talk

1. ZK is in contention with on-chain
composability and shared states.

2. ZK for private states, transparent
compute for shared states.

3. Threshold FHE for on-chain
confidential compute on shared state.

4. Framework to program transparent,
ZK, FHE computation.

(Public) State Machines

Transition function computes (sti+1, outputi) = f(sti, inputi)

st0

input0 input1

State Machines

...

User

Chain

st1 st2f f

B0 B1

x0

Blocks

Txns

B2

x1

sti = (B0, ..., Bi)Blockchain State:

Blockchains

Smart Contracts

Contract LiquidityPool {
uint public reserveX, reserveY;
function swapXtoY(…) public {

…
}

}

Pf

ZK prover for f

input

π – zk proof certifying that
“I have input so that
(st’, output) = f(st, input)”

output

Consensus updates st0 to st1 only if π is valid,
i,e. Vf(st0, st1, output0, π) = 1.

st’
User

Chain

st st’
Update check w/

ZK verifier Vf

ZK State Machines Execution (Zexe / Aleo / Mina Snaps)

Problem: shared state give rise
to race conditions.

Alice:
(st0, xA) ⟶ stA w/ πA

Bob:
(st0, xB) ⟶ stB w/ πB

Only one state update can
be performed.

ZKP smart contracts do not
support shared application
state due to race conditions

On-chain vs off-chain apps

App A App B

App C

Chain

App A App B

App C

Chain

Scalability
Privacy
Default composability

Scalability
Privacy
Opt-in off-chain composability

“Full-ZK” AppsOn-chain apps

Off-chain

Contract MyContract:
public st

DoStuff(cm, π):
RangeCheck.verify(…)

ZKCirc RangeCheck(cm; x, r):
Assert (cm = Commit(x; r)
Assert (x < k)

Structuring computation: Transparent vs ZK

On-chain

Contract AleoApp:
public st // record

Update(st, st’, π):
Update.verify(…)

Contract ZCashOrchard:
public MT
// Insert-only Merkle tree
public NS // nullifiers
Process(tx, π):

Action.verify(MT.rt, tx, nf; π)
Assert(nf ∉ NS)
Ins(tx, MT); Ins(nf, NS)

ZKCirc Action(rt, tx, nf; sk, …):
“tx is valid spend against rt”
“tx declare correct value change”
“tx declare correct nf”

ZKCirc Update(st, st’; x):
Assert (st’ = f(st, x))

ZKP touches no contract state ZKP re-write contract stateNew state does not invalid old proofs

Can be made “composable”:
Aztec Connect, FLAX, …

Agenda of this talk

1. ZK is in contention with on-chain
composability and shared states.

2. ZK for private states, transparent
compute for shared states.

3. Threshold FHE for on-chain
confidential compute on shared state.

4. Framework to program transparent,
ZK, FHE computation.

Third type of computation?

Replicated on-chain
No privacy
Shared state

ZK off-chain
Supports private state and inputs
No shared state

Private input to confidential shared state?
Same trust assumption as consensus?

A: YES! w/ Multi-party computation (MPC) or
Threshold Fully Homomorphic Encryption (FHE)

Fully Homomorphic Encryption

(Kg, Enc, Dec, Eval)

EvalEncm1, ..., ml

[m1], ..., [ml]

C

[C(m1, ..., ml)] Dec C(m1, ..., ml)

pk
dk

Kg

• FHE [Gentry09]: C is any circuit
• Active area of R&D in academia and industry. Efficiency improving.
• Many variants: leveled [GSW, FV, BGV], per-gate bootstrapping [FHEW, TFHE]
• “Current” state-of-the-art for binary FHE 2~12 binary gates (xnor, mux) per

second on GPU [cuFHE, nuFHE].

C

m1, ..., ml bits

C(m1, ..., ml)

FHE: Computation over encrypted data Problem: decryption key dk is a master secret!

[..] - ciphertexts

Threshold Cryptography

Liveness holds if k out of n servers cooperate

No security broken even if k – 1 servers collude

Threshold signatures Threshold encryption / decryption

Threshold cryptography particularly applicable to blockchains / BFT protocols w/ k ~ 2n/3.

We know of protocols to maintain “Shamir threshold secret shares” among a
dynamic set of nodes.
• Distributed key generation [DYXMK21, Groth21]
• Dynamic proactive secret-sharing [MZWLZJS19, GKMPS21, Groth21]

k n

Number of corrupt nodes

0

Dfinity: “Chain key cryptography” Anoma/Ferveo Penumbra

Biconomy, Webb, Lit, …

FHE with Threshold Decryption

(Kg, Enc, ThDec, Eval)

EvalEncm1, ..., ml

[m1], ..., [ml]

C

[C(m1, ..., ml)] ThDec C(m1, ..., ml)

k of (dk1, ..., dkn)

Kg

C

m1, ..., ml

C(m1, ..., ml)

• Achievable with Shamir secret shares
• Generic lattice-based construction [BGGJKRS17] (ePrint:2017/956), “inefficient”

• Why? Consensus-based, programmable selective information disclosure
• AMM spot price
• Trade validity

pk

[..] - ciphertexts

State Machines with Threshold Decryption

sti

esti

sti+1

esti+1

str

estr

…

Threshold Dec

str

estr

…

Decrypt part of the encrypted state est that is explicitly marked for decryption.

Can be replicated by any BFT-type consensus algorithm.
• Decryption available with a delay
• For privacy and safety, decryption => finalization

Q1: How to program this state machine?
Q2: Why is this useful?

Rest of the talk: Assume a BFT-type blockchain system with fixed FHE public
key pk that can replicate state machine with threshold decryption.

Types of Computation

Transparent On-chain ZK Off-chain Confidential On-Chain

SolidityEVM

Wasm

Groth16

Sonic

STARK
/
Plonk

Marlin

Aztec
ZK-Garage
Halo2
Plonky{2}
Jellyfish
Risc0

Arkworks
ZoKrates

Bellman
Circom
ZoKrates

MPC

FHE

FHEW
GSW
…

Substrate
ABCI

Rust
…

SEAL

Palisade

Concrete

Supporting
Shamir keys

Implementation?

Towards a Unified Framework: PESCA

Transparent
On-chain

ZK
Off-chain

Confidential
On-Chain

PESCA

All computation written in
pseudocode!

Privacy-Enhancing Smart-Contract Architecture

Expressive Programming Framework

Contract ExampeContract:
Public Func ProcessA(input): // executed on-chain

ValidateA.verify(input, π)
state’ = ComputeOverA(enc_state, input)
Async d = ThDec():

…

User Func GenerateA(): // executed off-chain
input = …
π = ValidataA.prove(input; …)

ZK Circuit ValidateA(): // proved off-chain, verified on-chain

FHE Circuit ComputeOverA(): // executed on-chain

Rest of the Talk: Privacy-preserving CFMM and Auctions

ZCash-like ZK Circuits for token
accounting

Merkle tree and nullifier set
Transparent Application logic

FHE circuits for application logic
on confidential states

Confidential inputs

Threshold decryption
Information release

Token with composable private usage

Contract ShieldedToken:
public MT, NS // Merkle tree of notes and nullifier set

ZK Circuit Action(tx; …):
v = …
Assert (tx.ev == FHE.Encpk(v, r))

User Func GenerateAction():
tx = …
π = ValidataA.prove(tx; …)

Private Func Process (tx, π):
Action.verify(tx; π)
“Add spent notes nullifiers to NS”
“Add new notes commitment to MT”

Idea: modify existing ZCash orchard design: value commitment => value encryption.

Constant Function Market Makers

Want to buy X

Want to buy Y

Liquidity providers:
Hold a position in both X and Y.

CFMM Contract

Privacy-preserving: trade origins and amounts are not revealed.

Information leakage:
- # of trade requests executed / dropped
- Spot price that is released programmatically

A (in reserve)

B (in reserve)

Reserve before

Reserve after

Trade

Privacy-preserving CFMM

Contract CFMM extends ShieldedToken:
private est // FHE encrypted state encrypting reserves (x, y)

Pub Func Trade(fund, refund, out):
Process(fund)
Balance.verify(fund, refund)
(est, eb) ⟵ FHE.Eval(Trade, est, (txfund.ev, txout.ev))
Async b ⟵ ThDec(eb):

If b = 1 then Process(out)
Else Proess(refund)

FHE Circuit Trade((x, y), (dx, dy)):
If (x + dx)(y + dy) >= xy then Return ((x + dx, y + dy), 1)
Else Return ((x, y), 0)

ThDec

Refund

Out

b = 0

b = 1

Fund

Preventing malicious decryptions

Contract FHEBase:
InitFHEState(est, πs): // FHE states must be initialized via this method

for each (eb, π) in zip(est, πs):
InitCheck.verify((this, eb), π)

ZK Circuit InitCheck(ContractID, eb; b, r):
Assert (eb = FHE.Encpk(b; r))

Mitigation: FHE initial states and all FHE input needs accompanying ZKPs particular
to each contract.

Attack: want to decrypt est, make new contract C and program C to release est.

Contract TargetContract
public est

Contract AttackContract
public est
Func DecryptAll: …

Privacy-preserving Sealed-bid Auctions

Sealed-bid: Bids not revealed to other bidders

Privacy-preserving: bids not revealed, to anyone, even after the auction is over.

Information leakage:
- Item seller learns settling price.
- Auction winner obtains item.
- All other bidders only learn that they did not win.

…

Item holder Bidders
Item

Bids

Privacy-preserving Sealed-bid Auctions

Contract FPSBA extends ShieldedToken:
private emax, ej // FHE encrypted state encrypting max_bid and winner index

FHE Circuit Bid[j]((max_bid, index), bid):
If (bid > max_bid) then Return (bid, j)
Else Return (max_bid, index)

Pub Func Setup(emax, ej):
j = 0; “state initiation checks”

Pub Func Bid(bid, refund, payout):
j += 1; “balance checks”; Process(bid)
(emax, ej) = FHE.Eval(Bid[j], (emax, ej), bid.ev)

Pub Func Finalize():
Async j = ThDec(ej):

Process(payoutj)
∀ i ≠ j: Process(refundi)

ThDec

Refund

Payout

lose

win

Bid

For each bid:

Closing Remarks

• Paper on PESCA to appear.

• We are hiring! If you are interested in benchmarking and
implementation of ZK, FHE, or threshold cryptography,
contact me!

