Structuring Computation for
Privacy-Preserving Apps

Wei Dai
@ weidai
Bain Capital Crypto
April 21, 2022

Do you have prior knowledge
of zero-knowledge proofs?

Zero-Knowledge Proofs (ZKPs)

C - arithmetic circuit, “program execution”
X — public input, w — secret witness

1t for x ~ “I know w such that C(x, w) = 1”

C

|
v v

Prover | X TU| Verifier
W= o — o —0/1

0 0
Typical provers: Typical verifiers:
User wallets, Chains, EVM

proving services contracts

Properties

e Succinct: itis short, verifier runtime is “smal
* Non-interactive: Only one message from P to V
* Transparent: No trusted setup

* Universal: No per-circuit trusted setup

III

Security

 Completeness: It works!

e Zero knowledge: Verifier learns nothing about w
 Knowledge soundness: Prover knows w

History

e Studied since the late 1980s

* Recent explosion, due to Z{ero}cash, Groth16,
Sonic, Marlin, Plonk, ...

Do ZKPs solve all privacy

problems for blockchain apps?
(Think Uniswap, Aave, NFT auction)

No.

Agenda of this talk

1. ZK is in contention with on-chain
composability and

2. ZK for private states, transparent
compute for

3. Threshold FHE for on-chain
confidential compute on

4. Framework to program transparent,
ZK, FHE computation.

(Public) State Machines

State Machines Transition function computes (st; . ,, output.) = f(st;, input.)

Blockchains User input, input,
Smart Contracts
Blocks By > B, 1 B, LiquidityPool {
R R public reserveX, reservey;
NS Xq . X swapXtoY(...)

/K State Machines Execution (Zexe / Aleo / Mina Snaps)

Problem: shared state give rise

e e 1. to race conditions.
Consensus updates st to st, only if ot is valid,

1,e. V(st,, st,, output,, m) = 1. Alice:
st Update check w/ (sto, Xp) — sty W/,
ZK verifier V; x
I_Chain Bob:
r- - - - - = ======= (Sto, XB) — StB W/ T[B
User | _1 o :
Py J output : Only one state update can
ZK prover for t | :
: 7t — zk proof certifying that | be performed.
1 “I have input so that :
nput ' (st} output) = f{st, nput)” ZKP smart contracts do not

support shared application
state due to race conditions

On-chain vs off-chain apps

On-chain apps “Full-ZK” Apps

Chain Chain

App A =) AppB T 4 t

| |
\ / App A App B
App C \

App C

Scalability Scalability
Privacy Privacy
Default composability Opt-in off-chain composability

Structuring computation: Transparent vs ZK

Contract MyContract: Contract ZCashOrchard: Contract AleoApp:
public st .+ public MT i public st // record
' // Insert-only Merkle tree |
public NS // nullifiers
Process(tx, m):

DoStuff(cm, m): Update(st, st’,):

RangeCheck.verify(...) Action.verify(MTrt, tx, nf:) | Update.verify(...)
| o Assert(nf & NS) !
On-chain Ins(tx, MT); Ins(nf, NS) | i
[_ . ' Can be made “composable”; ~— T '
" Off-chain | Aztec Connect, FLAX, ...

ZKCirc RangeCheck(cm; X, r):i . ZKCirc Action(rt, tx, nf; sk,) ZKCirc Update(st, st’; x):
. Assert (cm = Commit(x; r) |1 “txis valid spend against rt” 1 Assert (st” = f(st, x))
i “tx declare correct value change”: :
Assert (x <k) “tx declare correct nf”

__

ZKP touches no contract state New state does not invalid old proofs ZKP re-write contract state

Agenda of this talk

1. ZK is in contention with on-chain
composability and

2. ZK for private states, transparent
compute for

3. Threshold FHE for on-chain
confidential compute on

4. Framework to program transparent,
ZK, FHE computation.

Third type of computation?

Replicated on-chain ZK off-chain
No privacy Supports private state and inputs
Shared state No shared state

4

Private input to confidential shared state?
Same trust assumption as consensus?

A: YES! w/ Multi-party computation (MPC) or
Threshold Fully Homomorphic Encryption (FHE)

Fully Homomorphic Encryption

FHE: Computation over encrypted data Problem: decryption key dk is a master secret!

- Ci m,, ..., m, bits
(Kg, Enc, Dec, Eval) [..] - ciphertexts 1 : | DI
Nt/
v

‘k
pl dk c(m,, ..., m,)
I |]
[m,], ..., [m|]
my, ..., m; =» Enc —» Eval — [C(m,, ..., m)] = Dec > C(m, ... m)
)
C

 FHE [Gentry09]: Cis any circuit
e Active area of R&D in academia and industry. Efficiency improving.
* Many variants: leveled [GSW, FV, BGV], per-gate bootstrapping [FHEW, TFHE]
e “Current” state-of-the-art for binary FHE 2712 binary gates (xnor, mux) per
second on GPU [cuFHE, nuFHE].

Threshold Cryptography

Liveness holds if k out of n servers cooperate 0 K "
No security broken even if k — 1 servers collude Number of corrupt nodes

Threshold cryptography particularly applicable to blockchains / BFT protocols w/ k ~ 2n/3.

Threshold signatures Threshold encryption / decryption

Dfinity: “Chain key cryptography” Anoma/Ferveo Penumbra

Biconomy, Webb, Lit, ...

We know of protocols to maintain “Shamir threshold secret shares” among a
dynamic set of nodes.

* Distributed key generation [DYXMK21, Groth21]

* Dynamic proactive secret-sharing [MZWLZJS19, GKMPS21, Groth21]

FHE with Threshold Decryption

(Kg, Enc, ThDec, Eval) [..]- ciphertexts m,, ‘ m,
</
v

i (of (dky vy dk,) C(my, ..., My
* [my], ..., [m|] : 1
my, ..., m; =» Enc S » Eval — [C(m, ..., m})] =*{ ThDec | C(m,, ..., m))
)
C

* Achievable with Shamir secret shares

e Generic lattice-based construction [BGGJKRS17] (ePrint:2017/956), “inefficient”
 Why? Consensus-based, programmable selective information disclosure

* AMM spot price

* Trade validity

State Machines with Threshold Decryption

st N st
est, est

Threshold Dec

Decrypt part of the encrypted state est that is explicitly marked for decryption.

Can be replicated by any BFT-type consensus algorithm.
* Decryption available with a delay
* For privacy and safety, decryption => finalization

Rest of the talk: Assume a BFT-type blockchain system with fixed FHE public
key pk that can replicate state machine with threshold decryption.

Q1: How to program this state machine?
Q2: Why is this useful?

Types of Computation

Transparent On-chain

EVM Solidity
Rust
Wasm
Substrate
ABCI

Groth16

Sonic

Marlin

STARK

Plonk

Bellman
Circom
ZoKrates

Arkworks
/oKrates

Aztec
ZK-Garage
Halo2
Plonky{2}
Jellyfish
RiscO

Confidential On-Chain

MPC

SEAL

FHE Palisade

Concrete

Supporting
Shamir keys

FHEW
GSW' Implementation?

Towards a Unified Framework: PESCA

Privacy-Enhancing Smart-Contract Architecture

Transparent All computation written in
On-chain pseudocode!

ZK Confidential
Off-chain On-Chain

Expressive Programming Framework

Contract ExampeContract:
Public Func ProcessA(input): // executed on-chain
ValidateA.verify(input, 1)
state’ = ComputeOverA(enc_state, input)
Async d = ThDec():

User Func GenerateA(): // executed off-chain
input = ...
n = ValidataA.prove(input; ...)
ZK Circuit ValidateA(): // proved off-chain, verified on-chain

FHE Circuit ComputeOverA(): // executed on-chain

Rest of the Talk: Privacy-preserving CFMM and Auctions

ZCash-like ZK Circuits for token . .
Confidential inputs

FHE circuits for application logic
on confidential states

accounting \

/

Threshold decryption
Information release

Merkle tree and nullifier set
Transparent Application logic

Token with composable private usage

Idea: modify existing ZCash orchard design: value commitment => value encryption.

Contract ShieldedToken:
public MT, NS // Merkle tree of notes and nullifier set

ZK Circuit Action(tx; ...):
V=
Assert (tx.ev == FHE.Enc (v, r))

Private Func Process (tx, m):
Action.verify(tx; it)
“Add spent notes nullifiers to NS”
“Add new notes commitment to MT”

User Func GenerateAction():
tx=...
nt = ValidataA.prove(tx; ...)

Constant Function Market Makers

Want to buy X N Reserve before

O B (in reserve) \/
O

_—— Reserve after

\ CFMM Contract «—
@ / m Trade — | \
) ‘

Liquidity providers: A (in reserve)
Want to buy Y Hold a position in both X and Y.

Privacy-preserving: trade origins and amounts are not revealed.

Information leakage:
- # of trade requests executed / dropped
- Spot price that is released programmatically

Privacy-preserving CFMM

Contract CFMM extends ShieldedToken:
private est // FHE encrypted state encrypting reserves (X, y)

FHE Circuit Trade((x, y), (dx, dy)):
If (x + dx)(y + dy) >= xy then Return ((x + dx, y + dy), 1)

Else Return ((x, y), O)

Refund

Pub Func Trade(fund, refund, out):
Process(fund)
Balance.verify(fund, refund)
(est, eb) «— FHE.Eval(Trade, est, (txq,,4-€V, tX,-€V))
Async b «— ThDec(eb):

If b =1 then Process(out)
Else Proess(refund)

Preventing malicious decryptions

Contract TargetContract Contract AttackContract
public est » public est
Func DecryptAll: ...

Attack: want to decrypt est, make new contract C and program C to release est.

Mitigation: FHE initial states and all FHE input needs accompanying ZKPs particular
to each contract.

Contract FHEBase:
InitFHEState(est, ms): // FHE states must be initialized via this method
for each (eb,) in zip(est, ms):
InitCheck.verify((this, eb), m)

ZK Circuit InitCheck(ContractID, eb; b, r):
Assert (eb = FHE.Enc,(b; r))

Privacy-preserving Sealed-bid Auctions

2O
O ¢umm) M
) - =
ltem holder ' Bidders

Sealed-bid: Bids not revealed to other bidders

Privacy-preserving: bids not revealed, to anyone, even after the auction is over.

Information leakage:

- Item seller learns settling price.

- Auction winner obtains item.

- All other bidders only learn that they did not win.

Privacy-preserving Sealed-bid Auctions

Contract FPSBA extends ShieldedToken:
private emax, ej // FHE encrypted state encrypting max_bid and winner index

FHE Circuit Bid[j]((max_bid, index), bid):
If (bid > max_bid) then Return (bid, j)
Else Return (max_bid, index)

For each bid: lose Refund

Pub Func Setup(emax, ej):
j = 0; “state initiation checks”
Pub Func Bid(bid, refund, payout):
j+=1; “balance checks”; Process(bid)
(emax, ej) = FHE.Eval(Bid[j], (emax, €j), bid.ev)
Pub Func Finalize():
Async j = ThDec(ej):
Process(payout;)
Vi # j: Process(refund.)

Closing Remarks

* Paper on PESCA to appear.

* We are hiring! If you are interested in benchmarking and
implementation of ZK, FHE, or threshold cryptography,
contact me!

